Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cancer Gene Ther ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300216

RESUMO

Par6α encoded by PARD6A is a member of the PAR6 family and is reported to promote cancer initiation and progression. PARD6A is frequently upregulated in different types of cancers, but its regulatory role in lung cancer progression is yet to be established. In this study, we analyzed the PARD6A expression in biopsies from lung adenocarcinoma (LUAD) patients, and the survival probability using LUAD tissue microarray (TMA) and online datasets from TCGA and GEO. We conducted in vitro and in vivo assays to assess the role of PARD6A in regulating lung cancer progression, including proliferation, wound healing, transwell, RNA-seq, and subcutaneous tumor mice models. Our findings revealed that PARD6A is highly expressed in cancer tissues from LUAD patients and is associated with poor prognosis in LUAD patients. In vitro assays showed that PARD6A promoted cell proliferation, migration, and invasion. The transcriptome sequencing identified Serpina3 as one of the key downstream molecules of PARD6A. Ectopic expression of Serpina3 rescued impaired proliferation, migration, and invasion in PARD6A-knocking down H1299 cells, whereas silencing Serpina3 impeded enhanced proliferation, migration, and invasion in PARD6A-overexpressing H1975 cells. Our findings suggest that PARD6A promotes lung cancer progression by inducing Serpina3, which may be a promising therapeutic target.

2.
J Stomatol Oral Maxillofac Surg ; : 102066, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245287

RESUMO

OBJECTIVE: To investigate the effect of different forms of autolyzed antigen-extracted allogeneic(AAA) bone combined with vascular endothelial growth factor (VEGF) on bone reconstruction. METHOD: The AAA bone was made into a block and a granule shape, and mixed with VEGF to prepare VEGF bone. Establishment of rat calvarium defect animal model, it is divided into 5 groups. With block bone, granular bone, block VEGF bone, granular VEGF bone was implanted in the bone defect for repair as the experimental group. The defect area was evaluated by histological and CBCT analysis 4 weeks postoperatively. RESULTS: Postoperative 4 weeks imaging results showed that there was no high-density shadow in the bone defect area of the blank group and the volume of high-density shadow in the bone defect area of the experimental group was different. Histological results showed that no osteoblasts were found in the blank group, and new bone was formed in the experimental group. The effect of bone formation in the granular bone was better than that in the block bone, and the amount of new bone formation in the VEGF bone group was higher than that of the single bone group. CONCLUSION: Granular bone has a better osteogenesis effect than block bone. The effect of allogeneic bone combined with VEGF in promoting new bone formation in the area of the bone defect is better than that of allogeneic bone alone. These results provide a theoretical and practical basis for its further clinical application.

3.
Inorg Chem ; 63(37): 17116-17126, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39231020

RESUMO

Precisely tuning how and where a reaction occurs in a one-step selective system is important but challenging owing to the similar electronic environments in multiple active sites. In this work, highly selective and effective reaction sites were obtained by generating copper coordination polymers (Cu-CP) of a range of sizes and morphologies, from bulk solid crystals (1) to uniform nanosphere structures (1a), by controlling the amount of surfactant hexadecyl trimethylammonium bromide (CTAB). The results indicated that the morphology and size of the uniform nanosphere structures were affected by the proportion of CTAB; uniform distribution of nanosphere structures was achieved with a premade building carrier when the content of CTAB was 0.005 mmol, generating a well-established platform. Photocatalytic cadmium sulfide (CdS) was then immobilized on the surface of the premade platform unit 1a through an in situ process to generate CdS@1a composites with well-dispersed catalytic CdS active sites. Furthermore, the well-defined CdS@1a composite platform was utilized as photocatalysts to explore the selective one-step depolymerization reaction under blue-light irradiation. Notably, the CdS0.149@1a composite, which featured a unique structure with evenly dispersed, closely spaced catalytic sites, exhibiting remarkable photoelectrochemical behaviors for selective one-step depolymerization of lignin model substances to aromatic monomer phenol and acetophenone framework products. This work demonstrates the use of an inherently morphological process to construct outstanding photocatalysts that could enable a wide range of photocatalytic reactions.

4.
World J Surg Oncol ; 22(1): 243, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256855

RESUMO

OBJECTIVE: To investigate the relationship between the expression of androgen receptor (AR) and clinical characteristics in breast cancer. PATIENTS AND METHODS: The clinical records of all 432 patients tested for AR in our institution between January 2020 and May 2023 were reviewed. Clinical characteristics, age, menopausal status, tumor node metastasis (TNM) stage, distant metastasis, pathological complete response (pCR), histopathological features histological grade, estrogen receptor (ER), progesterone receptor, Her-2, Ki-67, and molecular subtype were registered for all patients. RESULTS: About 377 (87.27%) of the 432 patients had AR expression. No significant difference in AR expression was found with age, menopausal status, TNM stage of primary tumor, or pCR. AR was positively and significantly associated with the histological grade, and recurrence. The AR expression was significantly related with molecular subtypes, including ER, PR Her-2, Ki67 and molecular subtype. ER (OR = 10.489, 95%CI: 5.470-21.569), PR (OR = 7.690, 95%CI: 3.974-16.129, Her-2 (OR = 10.489, 95%CI: 2.779-23.490 and tumor recurrence (OR = 0.110, 95%CI: 0.031-0.377 were significant independent risk factors affecting AR expression. CONCLUSIONS: AR expression can serve as a reliable basis for judging the clinical molecular types and poor prognosis for breast cancer. AR may be a novel biomarker and target in AR-positive breast cancer depending on significant difference in AR expression among different molecular types of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Recidiva Local de Neoplasia , Receptor ErbB-2 , Receptores Androgênicos , Receptores de Estrogênio , Receptores de Progesterona , Humanos , Receptores Androgênicos/metabolismo , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Prognóstico , Adulto , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Receptores de Estrogênio/metabolismo , Seguimentos , Idoso , Estudos Retrospectivos , Metástase Linfática , Estadiamento de Neoplasias , Gradação de Tumores , Idoso de 80 Anos ou mais
5.
Cytotherapy ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39283287

RESUMO

BACKGROUND: Many studies have demonstrated the effectiveness of chimeric antigen receptor-T (CAR-T) cell therapy for relapsed or refractory multiple myeloma (RRMM), but the hematologic toxicity has not been well characterized. METHODS: A total of 111 adults with RRMM who received BCMA CAR-T cells, BCMA + CD19 CAR-T cells or tandem BCMA/CD19 dual-target (BC19) CAR-T cells infusion were enrolled. We characterized cytopenia and hematologic recovery at different time points after CAR-T-cell therapy, analyzed the effect of cytopenia on prognosis and identified the risk factors. RESULTS: Patients had a high probability of cytopenia, with anemia, neutropenia and thrombocytopenia occurring in 92%, 95% and 73%, respectively. There were 60 (54%) patients had prolonged hematologic toxicity (PHT) after D28. The median hemoglobin and platelet count were significantly lower at D28 post-CAR-T cell therapy than at baseline. Hemoglobin increased to above baseline at D90. The median absolute neutrophil count was lower than baseline at D0 and D28, and it recovered to baseline at D180. The baseline level of lactate dehydrogenase was associated with thrombocytopenia. Extramedullary involvement was associated with hemoglobin recovery, while the baseline level of albumin and types of CAR-T were related to platelet recovery. Patients with anemia at baseline and at D0, D180 and D360 had shorter progression-free survival (PFS), while anemia at D0, D60, D180 and D360 was associated with shorter overall survival (OS). Neutropenia at D0 was associated with shorter PFS and patients with neutropenia at D90 or D180 had shorter OS. Patients with thrombocytopenia at any time had shorter PFS and OS. Compared to patients without PHT, patients with PHT had shorter PFS and OS. CONCLUSIONS: The majority of RRMM patients treated with CAR-T cells experienced cytopenia. Cytopenia occurred at specific time points was associated with a poorer prognosis.

6.
Adv Sci (Weinh) ; : e2403044, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119940

RESUMO

Reprogramming tumor-associated macrophages (TAMs) to an inflammatory phenotype effectively increases the potential of immune checkpoint blockade (ICB) therapy. Artificial mitochondrial transplantation, an emerging and safe strategy, has made brilliant achievements in regulating the function of recipient cells in preclinic and clinic, but its performance in reprogramming the immunophenotype of TAMs has not been reported. Here, the metabolism of M2 TAMs is proposed resetting from oxidative phosphorylation (OXPHOS) to glycolysis for polarizing M1 TAMs through targeted transplantation of mannosylated mitochondria (mPEI/M1mt). Mitochondria isolated from M1 macrophages are coated with mannosylated polyethyleneimine (mPEI) through electrostatic interaction to form mPEI/M1mt, which can be targeted uptake by M2 macrophages expressed a high level of mannose receptors. Mechanistically, mPEI/M1mt accelerates phosphorylation of NF-κB p65, MAPK p38 and JNK by glycolysis-mediated elevation of intracellular ROS, thus prompting M1 macrophage polarization. In vivo, the transplantation of mPEI/M1mt excellently potentiates therapeutic effects of anti-PD-L1 by resetting an antitumor proinflammatory tumor microenvironment and stimulating CD8 and CD4 T cells dependent immune response. Altogether, this work provides a novel platform for improving cancer immunotherapy, meanwhile, broadens the scope of mitochondrial transplantation technology in clinics in the future.

7.
Cancer Cell Int ; 24(1): 284, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135158

RESUMO

BACKGROUND: Obesity and the forkhead box O1(FOXO1) affect the survival of breast cancer patients, but the underlying mechanism remains unclear. We aimed to investigate the role of FOXO1 in obesity-associated-breast cancer. METHODS: We screened 383 breast disease patients from the first affiliated hospital with Nanjing Medical University in 2020. We performed wound healing, transwell, matrigel assays to assess the metastatic ability of cancer cells. We adopted mRNAs sequencing to select the differentially expressed transcripts in breast cancer. We applied immunohistochemistry, western blot, tissue microarrays to assess the level of FOXO1 and epithelial-mesenchymal transition (EMT) pathways. We conducted bioinformatic analysis to investigate interactions between FOXO1 and miR-135b. We used fluorescence in situ hybridization, RT-qPCR to confirm the characteristics of circCNIH4. We conducted luciferase reporter assay, rescue experiments to investigate interactions between circCNIH4 and miR-135b. RESULTS: Obesity was positively correlated with the incidence and progression of breast cancer. Adipocytes enhanced the migration of breast cancer and attenuated the effects of FOXO1. MiR-135b was a binding gene of FOXO1 and was regulated by circCNIH4. CircCNIH4 exhibited antitumor activity in vitro and in vivo. CONCLUSION: Adipocytes might accelerate the progression of breast cancer by modulating FOXO1/miR-135b/ circCNIH4 /EMT axis and regulating copper homeostasis.

9.
J Hazard Mater ; 477: 135381, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088959

RESUMO

Recent studies have demonstrated superworms (larvae of Zophobas atratus) ability to degrade polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polypropylene (PP) within their digestive system. This study aimed to compare the ability of superworms to degrade the above four polyolefin plastics over a duration of 30 days. In this study, the degradation rate of PE was the highest, and the final average weight of superworms, as well as the final plastic mass loss consumed by them, significantly increased (73.38 % and 52.33 %, respectively) when PE was fed with wheat bran (1:1 [w/w]). FTIR and TGA indicated the occurrence of oxidation and biodegradation processes in the four polyolefin plastics when exposed to superworms. In addition, the molecular weights (Mw and Mn) of excreted polymer residues decreased by 3.1 % and 2.87 % in PE-fed superworms, suggesting that the depolymerization of PE was not entirely dependent on the gut microbial community. The analysis of the gut microbial communities revealed that the dominant microbial community were different for each type of plastic. The results indicate that the gut microbiome of superworms exhibited remarkable adaptability in degrading various types of plastics, and the intake preferences and efficiency of different plastics are associated with different dominant microbial community species.


Assuntos
Biodegradação Ambiental , Microbioma Gastrointestinal , Larva , Polienos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Polienos/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Poliquetos/metabolismo
10.
Nat Commun ; 15(1): 7069, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152103

RESUMO

Egg-laying performance is of great economic importance in poultry, but the underlying genetic mechanisms are still elusive. In this work, we conduct a multi-omics and multi-tissue integrative study in hens with distinct egg production, to detect the hub candidate genes and construct hub molecular networks contributing to egg-laying phenotypic differences. We identifiy three hub candidate genes as egg-laying facilitators: TFPI2, which promotes the GnRH secretion in hypothalamic neuron cells; CAMK2D, which promotes the FSHß and LHß secretion in pituitary cells; and OSTN, which promotes granulosa cell proliferation and the synthesis of sex steroid hormones. We reveal key endocrine factors involving egg production by inter-tissue crosstalk analysis, and demonstrate that both a hepatokine, APOA4, and an adipokine, ANGPTL2, could increase egg production by inter-tissue communication with hypothalamic-pituitary-ovarian axis. Together, These results reveal the molecular mechanisms of multi-tissue coordinative regulation of chicken egg-laying performance and provide key insights to avian reproductive regulation.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Células da Granulosa/metabolismo , Oviposição/genética , Hipófise/metabolismo , Hipotálamo/metabolismo , Reprodução/genética , Ovário/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo
11.
Free Radic Biol Med ; 223: 325-340, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111584

RESUMO

CX-5461, a first-in-class compound, is widely recognized as a selective inhibitor of RNA polymerase I. Recently, it has been reported to possess novel immunosuppressive properties with significant therapeutic effects in transplantation immune rejection. However, the potential use of CX-5461 for Systemic Lupus Erythematosus (SLE) treatment remains unknown. In this study, we elucidated the mechanism underlying the therapeutic efficacy of CX-5461 in lupus. Our findings demonstrated that CX-5461 selectively targets B cells and effectively reduces the proportions of B cells, germinal center B cells, and plasma cells in MRL/MPJ-Faslpr and Resiquimod (R848)-induced lupus mice. Molecular studies revealed that CX-5461 modulates CD36-Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4)-mediated glycerolipid metabolism in B cells, triggering ferroptosis through the p53- Solute Carrier Family 7 Member 11 (SLC7A11)- Arachidonate 12-Lipoxygenase (ALOX12) pathway, thereby decreasing IgG and Anti-Double-Stranded Deoxyribonucleic Acid (dsDNA) antibody levels and attenuating lupus. Collectively, these results suggest that CX-5461 holds promise as an effective candidate for targeted therapy against lupus.


Assuntos
Linfócitos B , Ferroptose , Lúpus Eritematoso Sistêmico , Proteína Supressora de Tumor p53 , Animais , Camundongos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Ferroptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos B/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 12-Lipoxigenase/genética , Feminino , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Endogâmicos MRL lpr , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Humanos
12.
Photodiagnosis Photodyn Ther ; : 104320, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39208921

RESUMO

Oral verrucous carcinoma (OVC) and proliferative verrucous leukoplakia (PVL) share similar histological characteristics and may have a common origin. When they appear simultaneously, the risk of malignant transformation in PVL increases. In elderly patients with both conditions, a safe, effective, simple, and minimally invasive treatment is preferable. Photodynamic therapy (PDT), a non-invasive treatment, utilizes specific wavelengths of light to activate photosensitizers, generating reactive oxygen species that selectively target malignant tissues with cytotoxic effects. This case report describes an elderly patient with coexisting extensive leukoplakia, PVL, and OVC, who achieved complete remission with no recurrence at 10 months following PDT. The treatment resulted in a satisfactory clinical outcome, preserving both the appearance and function of the oral cavity.

13.
Tissue Cell ; 90: 102504, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116531

RESUMO

In this study, we aim to investigate the role of enolase 1 (ENO1) in osteoarthritis (OA) pathogenic process and to uncover the underlying mechanism. To this end, we used IL-1ß to induce an in vitro OA­like chondrocyte model in human immortalized chondrocyte C-28/I2 cells. We manipulated the expression of ENO1 and cytokine receptor-like factor 1 (CRLF1) in IL-1ß-induced C-28/I2 cells using siRNA and/or overexpression and tested their effects on IL-1ß-induced pathologies including cell viability, apoptosis and inflammatory cytokine levels (IL-6 and TNF-α), and the expression of extracellular matrix-related enzymes and major mediators in the NF-κB signaling pathway (p-p65, p65, p-IκBα and IκBα). We used co-immunoprecipitation and immunofluorescence imaging to study a possible binding between ENO1 and CRLF1. Our data showed that IL-1ß induction elevated ENO1 and CRLF1 expression in C-28/I2 cells. Silencing ENO1 or CRLF1 inhibited the IL-1ß-induced cell viability damage, apoptosis, inflammation, and extracellular matrix degradation. The inhibitory effect of silencing ENO1 was reversed by CRLF1 overexpression, suggesting a functional connection between ENO1 and CRLF1, which could be attributed to a binding between these two partners. Our study could help validate the role of ENO1 in OA pathogenies and identify novel therapeutic targets for OA treatment.


Assuntos
Apoptose , Condrócitos , Proteínas de Ligação a DNA , Matriz Extracelular , Inflamação , Interleucina-1beta , Fosfopiruvato Hidratase , Proteínas Supressoras de Tumor , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Matriz Extracelular/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Receptores de Citocinas/metabolismo , Receptores de Citocinas/genética , Ligação Proteica , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , NF-kappa B/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Biomarcadores Tumorais
14.
Carbohydr Res ; 544: 109229, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154417

RESUMO

Liver cancer is the third leading cause of cancer deaths globally. The use of Hydroxycamptothecin (HCPT) as a first-line chemotherapeutic agent for liver, lung, and gastric cancers is often hampered by its low activity, limited targeting, and poor water solubility. This results in a low accumulation of HCPT in tumor cells, as well as the inability to maintain continuous treatment. Consequently, there is an urgent need to develop an accessory method that can enhance the therapeutic efficacy of HCPT while exhibiting good biocompatibility and targeted delivery ability. To address this critical issue, an enzyme-triggered supramolecular nanocarrier, refer as SCD/LCC SNCs, has been successfully developed, leveraging the aggregation of the negatively charged sulfate-modified ß-CDs and positively charged lauroylcholine chloride (LCC). This nanocarrier demonstrates acetylcholinesterase (LCC) triggered decomposition behavior, making it a promising drug carrier for HCPT. The cellular assays conducted have demonstrated that HCPT loaded into these SCD/LCC SNCs exhibit reduced cytotoxicity towards normal cells while maintaining robust tumor inhibitory activity and inducing apoptosis. Therefore, this study offers a promising strategy for the effective use of HCPT in the treatment of liver cancer.


Assuntos
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camptotecina/farmacologia , Camptotecina/química , Camptotecina/análogos & derivados , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Células Hep G2
15.
Int J Radiat Biol ; : 1-9, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136543

RESUMO

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is globally prevalent with high recurrence, low survival rate, and poor quality of life for patients. Derived from PAC-1, SM-1 can activate procaspase-3 and induce apoptosis in cancer cells to exert anti-tumor effects. However, the inhibitory effect of SM-1 on HNSCC after combination with radiation are unclear. This study aims to investigate the radiosensitizing effect of SM-1 on HNSCC in vitro and in vivo. METHODS: MTT method was used to detect the effect of SM-1 on the viability of HNSCC cell lines (HONE1, HSC-2, and CAL27). The effects of SM-1 combined with radiation on the survival index of HONE1, HSC-2, and CAL27 cell lines were determined by colony formation assay. Flow cytometry was used to investigate the effects of SM-1 and radiation combination on cell apoptosis and cell cycle, and western blot experiments were performed to detect the expression of apoptosis and cell cycle-related proteins. Finally, a xenograft tumor model of CAL27 was established to evaluate the anti-tumor effect of SM-1 combined with radiation in vivo. RESULTS: In vitro, SM-1 effectively inhibited the activity of HNSCC cell lines HONE1, HSC-2, and CAL27 cells, and synergistically showed anti-proliferation activity during combined irradiation. Meanwhile, anti-tumor effect of SM-1 on HNSCC was higher than that of Debio1143, and the radiosensitivity of cells was greatly increased. Flow cytometry and western blot analysis showed that SM-1 induced G2/M phase arrest of head and neck squamous cell carcinoma cells via inhibiting the expression of CyclinB1 and CDC2. Moreover, SM-1 activated caspase-3 activity and up-regulated the cleaved form of PARP1 to induce cell apoptosis. In vivo, SM-1 combined irradiation showed a good anti-tumor effect. CONCLUSION: SM-1 enhances HNSCC cell radiation sensitivity in vitro and in vivo, supporting its potential as a radiosensitizer for clinical trials in combination with radiotherapy.

16.
BMC Pediatr ; 24(1): 512, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123165

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a complex disease characterized by gastrointestinal inflammation and is one of the most common gastrointestinal emergencies in neonates. Mild to moderate cases of NEC require medical treatment, whereas severe cases necessitate surgical intervention. However, evidence for surgical indications is limited and largely dependent on the surgeon's experience, leading to variability in outcomes. The primary aim of this study is to identify the risk factors for surgical intervention in neonatal NEC, which will aid in predicting the optimal timing for surgical intervention. METHODS: A literature search was conducted in PubMed, Embase, and Web of Science databases for case-control studies exploring risk factors for NEC requiring surgical intervention. The search was completed on June 16, 2024, and data analysis was performed using R Studio 4.3.2. RESULTS: 18 studies were included, comprising 1,104 cases in the surgery group and 1,686 in the medical treatment group. The meta-analysis indicated that high C-reactive protein (CRP) levels [OR = 1.42, 95% CI (1.01, 1.99)], lower gestational age [OR = 0.52, 95% CI (0.3, 0.91)], sepsis [OR = 2.94, 95% CI (1.87, 4.60)], coagulation disorder [OR = 3.45, 95% CI (1.81, 6.58)], lack of enteral feeding [OR = 3.18, 95% CI (1.37, 7.35)], and hyponatremia [OR = 1.22, 95% CI (1.07, 1.39)] are significant risk factors for surgical treatment in neonatal NEC. CONCLUSIONS: High CRP levels, coagulation disorders, sepsis, lower gestational age, lack of enteral feeding, and hyponatremia are significant risk factors for surgical intervention in neonatal NEC. These findings have potential clinical significance for predicting surgical risk.


Assuntos
Enterocolite Necrosante , Humanos , Recém-Nascido , Proteína C-Reativa/análise , Enterocolite Necrosante/sangue , Enterocolite Necrosante/cirurgia , Idade Gestacional , Fatores de Risco
17.
Free Radic Biol Med ; 224: 382-392, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209136

RESUMO

Cellular senescence is a natural barrier of the transition from premalignant cells to invasive cancer. Pharmacological induction of senescence has been proposed as a possible anticancer strategy. In this study, we found that deoxyarbutin inhibited the growth of glioblastoma (GBM) cells by inducing cellular senescence, independent of tyrosinase expression. Instead, deoxyarbutin induced mitochondrial oxidative stress and damage. These aberrant mitochondria were key to the p53-dependent senescence of GBM cells. Facilitating autophagy or mitigating mitochondrial oxidative stress both suppressed p53 expression and alleviated cellular senescence induced by deoxyarbutin. Thus, our study reveals that deoxyarbutin induces mitochondrial oxidative stress to trigger the p53-dependent senescence of GBM cells. Importantly, deoxyarbutin treatment resulted in accumulation of p53, induction of cellular senescence, and inhibition of tumor growth in a subcutaneous tumor model of mouse. In conclusion, our study reveals that deoxyarbutin has therapeutic potential for GBM by inducing mitochondrial oxidative stress for p53-dependent senescence of GBM cells.

18.
Cell Biol Int ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030886

RESUMO

Exosomes are bilayer lipid bodies and contain a variety of bioactive molecules such as proteins, lipids, and nucleic acids, and so forth. Exosomes derived from solid tumors may play critical roles in tumor development and immune evasion. However, the underlying effects of tumor-derived exosomes on immune function in modulating intercellular crosstalk within the bone marrow niche during acute myeloid leukemia (AML) development and immune evasion remain largely elusive. In this study, we aimed to explore the role of AML-exos in AML immune evasion. First, we isolated tumor-derived exosomes from AML cells (AML-exos) and revealed the presence of programmed cell death ligand-1 (PD-L1) protein in AML-exos. Next, we demonstrated that AML-exos can directly suppress the activation of natural killer (NK) cells and inhibit the cytotoxicity of NK cells, probably through activating the programmed cell death-1 (PD-1)/PD-L1 pathway. Furthermore, the inhibitory effect of AML-exos on NK cells could be alleviated by either PD-L1 inhibitor or antagonist. In summary, we demonstrated that AML-exos possess a PD-L1-dependent tumor-promoting effect which may contribute to immune tolerance in antitumor therapy, but blocking the PD-1/PD-L1 pathway may alleviate the tumor immunosuppression induced by AML-exos. Our findings in this study may offer a new immunotherapy strategy to cure AML.

19.
Aging (Albany NY) ; 16(14): 11434-11445, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068670

RESUMO

BACKGROUND: The expression patterns and prognostic value of Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family genes in breast cancer remain to be elucidated. METHODS: The expression levels, prognostic value, and biological function of PLODs were determined using Oncomine, cBioPortal, GEPIA, Timer, UALCAN, PrognoScan, GeneMANIA, Metascape, and breast cancer tissue microarrays. RESULTS: The expressions of PLOD1 and PLOD3 were upregulated in breast cancer tissues, indicating worse clinical stages. High expression levels of PLOD family genes were associated with worse disease-free survival and distant metastasis-free survival, while high expression levels of PLOD1 and PLOD3 were related to worse overall survival in all breast cancer patients. The levels of PLOD family genes were all significantly higher in the age ≤51 y group, HR-negative patients, and triple negative breast cancer (TNBC) patients. They are associated with tumor-infiltrating immune cells (TIICs), including CD4+ T cells, CD8+ T cells, B cells, macrophages, neutrophils, and dendritic cells. According to co-expression gene analysis and functional enrichment, they are associated with protein hydroxylation, collagen biosynthesis and modifying enzymes, collagen metabolism, RNA splicing, extracellular matrix organization, VEGFA-VEGFR2 signaling pathway, and skeletal system development. Immunohistochemistry showed that the expressions of all PLOD family genes were significantly elevated in breast cancer tissues. PLOD1 expression was positively correlated with ER, TNBC status, and tumor grade. PLOD2 expression was positively connected with Ki-67 status. PLOD3 expression was positively related with age and tumor grade. CONCLUSIONS: PLOD family genes are novel potential prognostic biomarkers for breast cancer, and targeting PLOD inhibitors might be an effective strategy for breast cancer therapy.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Humanos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
20.
World J Psychiatry ; 14(6): 894-903, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984344

RESUMO

BACKGROUND: Postoperative pain management and cognitive function preservation are crucial for patients undergoing thoracoscopic surgery for lung cancer (LC). This is achieved using either a thoracic paravertebral block (TPVB) or sufentanil (SUF)-based multimodal analgesia. However, the efficacy and impact of their combined use on postoperative pain and postoperative cognitive dysfunction (POCD) remain unclear. AIM: To explore the analgesic effect and the influence on POCD of TPVB combined with SUF-based multimodal analgesia in patients undergoing thoracoscopic radical resection for LC to help optimize postoperative pain management and improve patient outcomes. METHODS: This retrospective analysis included 107 patients undergoing thoracoscopic radical resection for LC at The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital between May 2021 and January 2023. Patients receiving SUF-based multimodal analgesia (n = 50) and patients receiving TPVB + SUF-based multimodal analgesia (n = 57) were assigned to the control group and TPVB group, respectively. We compared the Ramsay Sedation Scale and visual analog scale (VAS) scores at rest and with cough between the two groups at 2, 12, and 24 h after surgery. Serum levels of epinephrine (E), angio-tensin II (Ang II), norepinephrine (NE), superoxide dismutase (SOD), vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), and S-100 calcium-binding protein ß (S-100ß) were measured before and 24 h after surgery. The Mini-Mental State Examination (MMSE) was administered 1 day before surgery and at 3 and 5 days after surgery, and the occurrence of POCD was monitored for 5 days after surgery. Adverse reactions were also recorded. RESULTS: There were no significant time point, between-group, and interaction effects in Ramsay sedation scores between the two groups (P > 0.05). Significantly, there were notable time point effects, between-group differences, and interaction effects observed in VAS scores both at rest and with cough (P < 0.05). The VAS scores at rest and with cough at 12 and 24 h after surgery were lower than those at 2 h after surgery and gradually decreased as postoperative time increased (P < 0.05). The TPVB group had lower VAS scores than the control group at 2, 12, and 24 h after surgery (P < 0.05). The MMSE scores at postoperative days 1 and 3 were markedly higher in the TPVB group than in the control group (P < 0.05). The incidence of POCD was significantly lower in the TPVB group than in the control group within 5 days after surgery (P < 0.05). Both groups had elevated serum E, Ang II, and NE and decreased serum SOD levels at 24 h after surgery compared with the preoperative levels, with better indices in the TPVB group (P < 0.05). Marked elevations in serum levels of VEGF, TGF-ß1, TNF-α, and S-100ß were observed in both groups at 24 h after surgery, with lower levels in the TPVB group than in the control group (P < 0.05). CONCLUSION: TPVB combined with SUF-based multimodal analgesia further relieves pain in patients undergoing thoracoscopic radical surgery for LC, enhances analgesic effects, reduces postoperative stress response, and inhibits postoperative increases in serum VEGF, TGF-ß1, TNF-α, and S-100ß levels. This scheme also reduced POCD and had a high safety profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA