Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Bull (Beijing) ; 69(4): 512-525, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38160175

RESUMO

In vaccine development, broadly or cross-type neutralizing antibodies (bnAbs or cnAbs) are frequently targeted to enhance protection. Utilizing immunodominant antibodies could help fine-tune vaccine immunogenicity and augment the precision of immunization strategies. However, the methodologies to capitalize on the attributes of bnAbs in vaccine design have not been clearly elucidated. In this study, we discovered a cross-type neutralizing monoclonal antibody, 13H5, against human papillomavirus 6 (HPV6) and HPV11. This nAb exhibited a marked preference for HPV6, demonstrating superior binding activity to virus-like particles (VLPs) and significantly higher prevalence in anti-HPV6 human serum as compared to HPV11 antiserum (90% vs. 31%). Through co-crystal structural analysis of the HPV6 L1 pentamer:13H5 complex, we delineated the epitope as spanning four segments of amino acids (Phe42-Ala47, Gly172-Asp173, Glu255-Val275, and Val337-Tyr351) on the L1 surface loops. Further interaction analysis and site-directed mutagenesis revealed that the Ser341 residue in the HPV6 HI loop plays a critical role in the interaction between 13H5 and L1. Substituting Ser341 with alanine, which is the residue type present in HPV11 L1, almost completely abolished binding activity to 13H5. By swapping amino acids in the HPV11 HI loop with corresponding residues in HPV6 L1 (Ser341, Thr338, and Thr339), we engineered chimeric HPV11-6HI VLPs. Remarkably, the chimeric HPV11-6HI VLPs shifted the high immunodominance of 13H5 from HPV6 to the engineered VLPs and yielded comparable neutralization titers for both HPV6 and HPV11 in mice and non-human primates. This approach paves the way for the design of broadly protective vaccines from antibodies within the main immunization reservoir.


Assuntos
Vacinas contra Papillomavirus , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo/genética , Anticorpos Antivirais , Papillomavirus Humano 6 , Imunização , Aminoácidos
2.
J Virol ; 97(3): e0181922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815785

RESUMO

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Assuntos
Proteínas do Capsídeo , Papillomavirus Humano 16 , Feminino , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos/genética , Mutação , Linhagem Celular , Estrutura Terciária de Proteína/genética , Modelos Moleculares
3.
NPJ Vaccines ; 7(1): 134, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316367

RESUMO

In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.

4.
Nat Commun ; 11(1): 2841, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503989

RESUMO

The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.


Assuntos
Proteínas do Capsídeo/imunologia , Neoplasias/terapia , Papillomaviridae/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Desenho de Fármacos , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Mutação , Neoplasias/virologia , Testes de Neutralização , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
5.
Emerg Microbes Infect ; 8(1): 1721-1733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769733

RESUMO

Human papillomavirus type 6 (HPV6) is the major etiologic agent of genital warts and recurrent respiratory papillomatosis. Although the commercial HPV vaccines cover HPV6, the neutralization sites and mode for HPV6 are poorly understood. Here, we identify the HPV6 neutralization sites and discriminate the inhibition of virus attachment and entry by three potent neutralizing antibodies (nAbs), 5D3, 17D5, and 15F7. Mutagenesis assays showed that these nAbs predominantly target surface loops BC, DE, and FG of HPV6 L1. Cryo-EM structures of the HPV6 pseudovirus (PsV) and its immune complexes revealed three distinct binding modalities - full-occupation-bound to capsid, top-center-bound-, and top-rim-bound to pentamers - and illustrated a structural atlas for three classes of antibody-bound footprints that are located at center-distal ring, center, and center-proximal ring of pentamer surface for 5D3, 17D5, and 15F7, respectively. Two modes of neutralization were identified: mAb 5D3 and 17D5 block HPV PsV from attaching to the extracellular matrix (ECM) and the cell surface, whereas 15F7 allows PsV attachment but prohibits PsV from entering the cell. These findings highlight three neutralization sites of HPV6 L1 and outline two antibody-mediated neutralization mechanisms against HPV6, which will be relevant for HPV virology and antiviral inhibitor design. HighlightsMajor neutralization sites of HPV6 were mapped on the pseudovirus cryo-EM structuremAb 15F7 binds HPV6 capsid with a novel top-rim binding modality and confers a post-attachment neutralizationmAb 17D5 binds capsid in top-centre manner but unexpectedly prevents virus from attachment to cell surface.


Assuntos
Papillomavirus Humano 6/fisiologia , Infecções por Papillomavirus/virologia , Ligação Viral , Internalização do Vírus , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Papillomavirus Humano 6/genética , Papillomavirus Humano 6/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Papillomavirus/imunologia
6.
Nat Commun ; 9(1): 5360, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560935

RESUMO

Sequence variability in surface-antigenic sites of pathogenic proteins is an important obstacle in vaccine development. Over 200 distinct genomic sequences have been identified for human papillomavirus (HPV), of which more than 18 are associated with cervical cancer. Here, based on the high structural similarity of L1 surface loops within a group of phylogenetically close HPV types, we design a triple-type chimera of HPV33/58/52 using loop swapping. The chimeric VLPs elicit neutralization titers comparable with a mix of the three wild-type VLPs both in mice and non-human primates. This engineered region of the chimeric protein recapitulates the conformational contours of the antigenic surfaces of the parental-type proteins, offering a basis for this high immunity. Our stratagem is equally successful in developing other triplet-type chimeras (HPV16/35/31, HPV56/66/53, HPV39/68/70, HPV18/45/59), paving the way for the development of an improved HPV prophylactic vaccine against all carcinogenic HPV strains. This technique may also be extrapolated to other microbes.


Assuntos
Desenho de Fármacos , Papillomaviridae/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Avaliação Pré-Clínica de Medicamentos , Epitopos/genética , Epitopos/imunologia , Feminino , Engenharia Genética/métodos , Imunogenicidade da Vacina , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Testes de Neutralização , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/genética , Filogenia , Organismos Livres de Patógenos Específicos , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
7.
Emerg Microbes Infect ; 7(1): 160, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30254257

RESUMO

Human papillomavirus (HPV) is the causative agent in genital warts and nearly all cervical, anogenital, and oropharyngeal cancers. Nine HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) are associated with about 90% of cervical cancers and 90% of genital warts. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent HPV-associated diseases. However, there is only one commercially available HPV vaccine, Gardasil 9, produced from Saccharomyces cerevisiae that covers all nine types, raising the need for microbial production of broad-spectrum HPV vaccines. Here, we investigated whether N-terminal truncations of the major HPV capsid proteins L1, improve their soluble expression in Escherichia coli. We found that N-terminal truncations promoted the soluble expression of HPV 33 (truncated by 10 amino acids [aa]), 52 (15 aa), and 58 (10 aa). The resultant HPV L1 proteins were purified in pentamer form and extensively characterized with biochemical, biophysical, and immunochemical methods. The pentamers self-assembled into virus-like particles (VLPs) in vitro, and 3D cryo-EM reconstructions revealed that all formed T = 7 icosahedral particles having 50-60-nm diameters. Moreover, we formulated a nine-valent HPV vaccine candidate with aluminum adjuvant and L1 VLPs from four genotypes used in this study and five from previous work. Immunogenicity assays in mice and non-human primates indicated that this HPV nine-valent vaccine candidate elicits neutralizing antibody titers comparable to those induced by Gardasil 9. Our study provides a method for producing a nine-valent HPV vaccine in E. coli and may inform strategies for the soluble expression of other vaccine candidates.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Escherichia coli/genética , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Motivos de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/administração & dosagem , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/química , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Deleção de Sequência
8.
mBio ; 8(5)2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951471

RESUMO

Persistent, high-risk human papillomavirus (HPV) infection is the primary cause of cervical cancer. Neutralizing antibodies elicited by L1-only virus-like particles (VLPs) can block HPV infection; however, the lack of high-resolution structures has limited our understanding of the mode of virus infection and the requirement for type specificity at the molecular level. Here, we describe two antibodies, A12A3 and 28F10, that specifically bind to and neutralize HPV58 and HPV59, respectively, through two distinct binding stoichiometries. We show that the epitopes of A12A3 are clustered in the DE loops of two adjacent HPV58 L1 monomers, whereas 28F10 recognizes the HPV59 FG loop of a single monomer. Via structure-based mutagenesis and analysis of antibody binding, we further identified the residues HPV58 D154, S168, and N170 and HPV59 M267, Q270, E273, Y276, K278, and R283, which play critical roles in virus infection. By substituting these strategic epitope residues into other HPV genotypes, we could then redirect the type-specific binding of the antibodies to these genotypes, thus highlighting the importance of these specific residues, HPV58 R161, S168, and N308 and HPV59 Q270, E273, and D281. Overall, our findings provide molecular insights into potential structural determinants of HPV required for infectivity and type specificity.IMPORTANCE High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites.


Assuntos
Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , Epitopos/imunologia , Papillomaviridae/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Epitopos/química , Genótipo , Humanos , Mutagênese , Papillomaviridae/química , Papillomaviridae/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Ligação Proteica
9.
Vaccine ; 35(35 Pt B): 4637-4645, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28736197

RESUMO

Human papillomavirus (HPV) types 16 and 18 account for approximately 70% of cervical cancer worldwide. Neutralizing HPV prophylactic vaccines offer significant benefit, as they block HPV infection and prevent subsequent disease. However, the three licensed HPV vaccines that cover these two genotypes were produced in eukaryotic cells, which is expensive, particularly for low-income countries where HPV is highest. Here, we report a new HPV16 and -18 bivalent candidate vaccine produced from Escherichia coli. We used two strategies of N-terminal truncation of HPV L1 proteins and soluble non-fusion expression to generate HPV16 and HPV18 L1-only virus-like particles (VLPs) in a scalable process. Through comprehensive characterization of the bivalent candidate vaccine, we confirm lot consistency in a pilot scale-up of 30L, 100L and 500L. Using cryo-EM 3D reconstruction, we found that HPV16 and -18VLPs present in a T=7 icosahedral arrangement, similar in shape and size to that of the native virions. This HPV16/18 bivalent vaccine shares comparable immunogenicity with the licensed vaccines. Overall, we show that the production of a HPV16/18 bivalent vaccine from an E. coli expression system is robust and scalable, with potentially good accessibility worldwide as a population-based immunization strategy.


Assuntos
Escherichia coli/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Vacinas contra Papillomavirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Escherichia coli/imunologia , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Camundongos , Microscopia Eletrônica , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/economia , Vacinas contra Papillomavirus/genética , Neoplasias do Colo do Útero/prevenção & controle , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
10.
Vaccine ; 35(24): 3222-3231, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28483196

RESUMO

Human papillomavirus (HPV)-6 and HPV11 are the major etiological causes of condylomata acuminate. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent subsequent disease. Currently, two commercially available HPV vaccines cover these two genotypes, expressed by Saccharomyces cerevisiae. Here we describe another HPV6/11 bivalent vaccine candidate derived from Escherichia coli. The soluble expression of N-terminally truncated L1 proteins was optimized to generate HPV6- and HPV11 L1-only virus-like particles (VLPs) as a scalable process. In a pilot scale, we used various biochemical, biophysical and immunochemical approaches to comprehensively characterize the scale and lot consistency of the vaccine candidate at 30L and 100L. Cryo-EM structure analysis showed that these VLPs form a T=7 icosahedral lattice, imitating the L1 capsid of the authentic HPV virion. This HPV6/11 bivalent vaccine confers a neutralization titer and antibody production profile in monkey that is comparable with the quadrivalent vaccine, Gardasil. This study demonstrates the robustness and scalability of a potential HPV6/11 bivalent vaccine using a prokaryotic system for vaccine production.


Assuntos
Escherichia coli/genética , Papillomavirus Humano 11/imunologia , Papillomavirus Humano 6/imunologia , Imunogenicidade da Vacina , Vacinas contra Papillomavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/administração & dosagem , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 6/genética , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/economia , Vacinas contra Papillomavirus/genética , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura
11.
Protein Expr Purif ; 133: 110-120, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28267627

RESUMO

Human papillomavirus (HPV) is widely accepted to be the major causative pathogen of cervical cancer, warts, and other epithelial tumors. Virus infection and subsequent disease development can be prevented by vaccination with HPV vaccines derived from eukaryotic expression systems. Here, we report the soluble expression of the major capsid protein L1 of HPV31, a dominant carcinogenic HPV genotype, in Escherichia coli. HPV31 L1 protein and its elongated form (L1+) were observed in SDS-PAGE and CE-SDS analysis, generated by the native HPV31 L1 gene with a TAA stop codon. Replacing the TAA with TAG but not TGA could completely terminate protein translation. Mass spectrometry sequencing showed that L1+ comprised L1 with a C-terminal extension of 38 amino acids (aa). RNA folding analysis revealed that the unfaithful L1+ expression may result from translational read-through, as TAG is more stable and accessible than the other stop codons. The 38-aa elongated fragment perturbs self-assembly of HPV31 L1+, as shown in size and morphology analyses. By 3D cryo-electron microscopy structure determination, we show self-assembly of purified HPV31 L1 (TAG) VLPs into T = 7 icosahedral symmetry particles, resembling the native HPV virion. Finally, through additional characterization and antigenicity/immunogenicity assays, we verified that the E.coli-derived HPV31 VLPs are an ideal immunogen for HPV vaccine development. Our findings outline a codon optimization stratagem for protein expression and provide a method for the in-depth investigation of prokaryotic translation regulation.


Assuntos
Proteínas do Capsídeo , Códon de Terminação , Expressão Gênica , Papillomavirus Humano 31/genética , Mutagênese , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Papillomavirus Humano 31/metabolismo , Humanos , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/biossíntese , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Structure ; 24(6): 874-85, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276427

RESUMO

Cervical cancer is the second most prevalent malignant tumor among women worldwide. High-risk human papillomaviruses (HPVs) are believed to be the major causative pathogens of mucosal epithelial cancers including cervical cancer. The HPV capsid is made up of 360 copies of major (L1) and 72 copies of minor (L2) capsid proteins. To date, limited high-resolution structural information about the HPV capsid has hindered attempts to understand details concerning the mechanisms by which HPV assembles and infects cells. In this study, we have constructed a pseudo-atomic model of the HPV59 L1-only capsid and demonstrate that the C-terminal arm of L1 participates in virus-host interactions. Moreover, when conjugated to a scaffold protein, keyhole limpet hemocyanin (KLH), this arm is immunogenic in vivo. These results provide new insights that will help elucidate HPV biology, and hence pave a way for the design of next-generation HPV vaccines.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/fisiologia , Neoplasias do Colo do Útero/imunologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Cristalografia por Raios X , Feminino , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Papillomaviridae/imunologia , Conformação Proteica , Neoplasias do Colo do Útero/virologia
13.
Sci Rep ; 6: 19042, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26750243

RESUMO

The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr(135) and Val(141) on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Proteínas do Capsídeo/imunologia , Papillomavirus Humano 16/imunologia , Vacinas contra Papillomavirus/química , Vacinas de Partículas Semelhantes a Vírus/química , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Afinidade de Anticorpos , Especificidade de Anticorpos , Linfócitos B/química , Linfócitos B/imunologia , Linfócitos B/virologia , Proteínas do Capsídeo/química , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Heparitina Sulfato/química , Heparitina Sulfato/farmacologia , Papillomavirus Humano 16/química , Humanos , Soros Imunes/química , Memória Imunológica , Simulação de Acoplamento Molecular , Mutação , Testes de Neutralização , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
14.
Bing Du Xue Bao ; 32(5): 551-9, 2016 09.
Artigo em Chinês | MEDLINE | ID: mdl-30001576

RESUMO

The goals of this study were to establish a scalable production method to prepare human papillomavirus(HPV)16pseudovirus (PsV) using suspension-adapted HEK-293 FT cells and to improve the purification efficiency of HPV PsV. Furthermore, we aimed to solve the cryo-electron microscopy (cryo-EM) structure of HPV16 PsV. The suspension f HEK-293 FT cells were generated from adherent cells by a stepwise decrease in serum content and the addition of an anti-clumping agent during culturing. The resultant HEK-293 FT suspension cells were transfected with an L1/L2 expression vector and pN31-EGFP plasmid to generate HPV16 PsV in the Wave Bioreactor. Following cell lysis,HPV16 PsV was purified by sucrose density gradient and subsequent CsCl iso-density gradient ultra-centrifugation The final titer of HPV16 PsV was 8.2 × 10(5) TCID(50)/µL. Purified HPV16 PsV was comfirmed to as contain L1 and L2protein by western blotting, and the L1 concentration was determined to be 156.0 µg/mL by quantitative ELISA. Finally, a FEI Tecnai G2F30 electron microscope and AUTO3 DEM were used to solve the cryoEM structure of HPV16 PsV at a resolution of 14 Å.The structure shows that HPV16 PsV exists as a T=7dicosahedral lattice, with a diameter of 600 Å. These results will be beneficial for neutralization assays and for anti-sera for HPV vaccines, the high-resolution structure determination of HPV16 PsV, and the investigation of interactions between HPV L1 and L2.


Assuntos
Papillomavirus Humano 16/ultraestrutura , Infecções por Papillomavirus/virologia , Vírion/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/crescimento & desenvolvimento , Papillomavirus Humano 16/fisiologia , Humanos , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/fisiologia
15.
PLoS One ; 10(4): e0123944, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905781

RESUMO

Human Papillomavirus (HPV), a non-enveloped, double-stranded DNA virus, is responsible for 5% of human cancers. The HPV capsid consists of major and minor structural proteins, L1 and L2. L1 proteins form an icosahedral shell with building blocks of the pentameric capsomere, and one L2 molecule extends outward from the central hole of the capsid. Thus, L2 is concealed within L1 and only becomes exposed when the capsid interacts with host cells. The low antigenic variation of L2 means that this protein could offer a target for the development of a pan-HPV vaccine. Toward this goal, here we describe an anti-L2 monoclonal antibody, 14H6, which broadly neutralizes at least 11 types of HPV, covering types 6, 11, 16, 18, 31, 33, 35, 45, 52, 58 and 59, in pseudovirion--based cell neutralization assay. The mAb 14H6 recognizes a minimal linear epitope located on amino acids 21 to 30 of the L2 protein. Alanine scanning mutagenesis and sequence alignment identified several conserved residues (Cys22, Lys23, Thr27, Cys28 and Pro29) that are involved in the 14H6 binding with L2. The epitope was grafted to several scaffolding proteins, including HPV16 L1 virus-like particles, HBV 149 core antigen and CRM197. The resultant chimeric constructs were expressed in Escherichia coli and purified with high efficiency. Immunization with these pan-HPV vaccine candidates elicited high titers of the L2-specific antibody in mice and conferred robust (3-log) titers of cross-genotype neutralization, including against HPV11, 16, 18, 45, 52, 58 and 59. These findings will help in the development of an L2-based, pan-HPV vaccine.


Assuntos
Alphapapillomavirus/genética , Alphapapillomavirus/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas Virais/imunologia , Animais , Mapeamento de Epitopos , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Virais/química , Proteínas Virais/imunologia
16.
Se Pu ; 25(4): 573-6, 2007 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-17970123

RESUMO

A stomach large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) coupled with mini solid phase extraction (SPE) method for the rapid and simultaneous determination of 13 organic phosphorous pesticide residues in spinach samples is presented. The compounds were identified with their retention times and the abundance ratios of qualifier and target ions. Quantification was calculated based on the extraction of spiking standards in a blank sample. The limit of detection (LOD) was determined by the experimental value of the signal-to-noise ratio of 3:1, and the limit of quantification (LOQ) was defined at the experimental value of the signal-to-noise ratio of 10:1. The recoveries obtained ranged from 76.8% to 114.0% with the relative standard deviations between 1.5% and 17.6% except dimethoate. The LODs ranged from 0.5 to 25 microg/kg. This simple, rapid and reliable method has wide applications for the simultaneous determination of multiple pesticide residues in spinach and possibly other species.

17.
Se Pu ; 24(4): 347-50, 2006 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-17017157

RESUMO

A rapid, sensitive and accurate method has been developed for the determination of seventeen 2, 3, 7, 8-substituted congeners of polychlorinated dibenzo-p-dioxins and dibenzo-furans (PCDD/Fs) in sediment using isotope dilution high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS). Dibenzo-p-dioxins and dibenzo-furans were extracted from samples by accelerated solvent extraction (ASE) and then purified by fluid management systems (FMS) with silica column, alumina column and carbon column. Confirmation and quantitative analysis at pg/g level of PCDD/Fs were performed by HRGC/HRMS using voltage selective ion record (VSIR) mode. Recoveries of fifteen isotopically labeled compound solutions (LCS) and the precision and recovery standards (PAR) were found to be in the range of 49.8% -85.3% and 93.2% - 113.8%, respectively. The detection limits of the method for both 2, 3, 7, 8-tetrachloro-dibenzo-furan (TCDF) and 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin (TCDD) were determined to be 0.1 pg/g. This method not only meets the requirements of international standards, but also shortens analysis time from 2 weeks to 2 days.


Assuntos
Benzofuranos/análise , Cromatografia Gasosa/métodos , Espectrometria de Massas/métodos , Óleos de Plantas/química , Dibenzodioxinas Policloradas/análogos & derivados , Benzofuranos/química , Dibenzofuranos Policlorados , Dioxinas/química , Furanos/análise , Furanos/química , Limite de Detecção , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/química
18.
Se Pu ; 24(1): 14-8, 2006 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-16827302

RESUMO

A method was developed for the simultaneous determination of chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FF) residues in animal tissues using gas chromatography/mass spectrometry (GC/MS) with chemical ionization source in negative mode. The homogenized samples were extracted with ethyl acetate and the extracts were partitioned with n-hexane to remove lipids. Further cleanup was performed on a florisil cartridge and the purified samples were derivatized with Sylon BFT [N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA)-trimethylchlorosilane (TMCS), 99: 1, v/v] in toluene. Meta-nitrochloramphenicol (m-CAP) was used as the internal standard for the determination. Selected ion monitoring (SIM) was used for detection, ions were chosen, respectively, for the monitoring at m/z 432, 466, 468, 470 for m-CAP, m/z 376, 378, 466, 468 for CAP, m/z 409, 411, 499, 501 for TAP, and m/z 339, 341, 429, 431 for FF. Quantitative ions were selected at m/z 466 for CAP and m-CAP, at m/z 339 for FF and at m/z 409 for TAP. The detection limits were 0.03 microg/kg for CAP, 0.2 microg/kg for FF and TAP. The correlation coefficients were above 0.99 for the calibration curves of the medicines. The linear ranges were 0.1 - 8.0 microg/kg for CAP and 0.2 - 4.0 microg/kg for FF and TAP. The reproducibilities of the compounds within a batch were 5.5%, 10.4%, and 8.8% for CAP, FF, and TAP respectively, while the corresponding values between the batches were 7.4%, 20.7%, and 19.1%. The recoveries were 80.0% - 111.5%, and the relative standard deviations were 1.2% - 15.4%. The method is applicable for detection of the residues in animal derived food, such as pork, poultry and aquatic products.


Assuntos
Cloranfenicol/análise , Tianfenicol/análogos & derivados , Tianfenicol/análise , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hexanos , Limite de Detecção , Suínos
19.
Se Pu ; 23(3): 229-33, 2005 May.
Artigo em Chinês | MEDLINE | ID: mdl-16124561

RESUMO

A multi-residue analytical method for the simultaneous determination of persistent organic pollutants (POPs) in rice samples was developed. POPs were extracted from rice with ethyl acetate/n-hexane (80:20, v/v) by sonication, and determined by gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode. A fused silica capillary column DB-35MS (30 m x 0.25 mm i.d. x 0.25 microm) was employed. Operating conditions were as follows: injector port temperature, 300 degrees C; column temperature, programming; carrier gas, helium; flow rate, 1.0 mL/min; sample size, 1 microL with splitless injection. The mass spectrometric detector (MSD) was operated in electron impact ionization mode with an ionizing energy of 70 eV. Analysis was performed with selected ion monitoring (SIM) using one target and one or two qualifier ion. POPs were confirmed by their retention times, their qualifier and target ions, and their qualifier/target abundance ratios. Recovery studies were performed at 0.05, 0.1, and 0.5 mg/L spiked levels of each POPs, and the recoveries obtained ranged from 81.99% to 100.60% with relative standard deviations between 2.37% and 18.48%. The detection limits of the method ranged from 0.1 to 5 ng/g for the different POPs except endrin, trans-chlordane and cis-chlordane. The results show that the method developed is sensitive and reliable.


Assuntos
Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oryza/química , Resíduos de Praguicidas/análise , Clordano/análise , Heptacloro/análise , Hexaclorobenzeno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA