Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659748

RESUMO

Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long timescales. Recent advances in rare event sampling have allowed us to reach these timescales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitudes of timescales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anti-cancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.

2.
J Chem Theory Comput ; 18(5): 3231-3238, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35384668

RESUMO

An effective implementation of enhanced sampling algorithms for molecular dynamics simulations requires a priori knowledge of the approximate reaction coordinate describing the relevant mechanisms in the system. In this work, we focus on the recently developed artificial intelligence-based State Predictive Information Bottleneck (SPIB) approach and demonstrate how SPIB can learn such a reaction coordinate as a deep neural network even from undersampled trajectories. We exemplify its usefulness by achieving more than 40 times acceleration in simulating two model biophysical systems through well-tempered metadynamics performed by biasing along the SPIB-learned reaction coordinate. These include left- to right-handed chirality transitions in a synthetic helical peptide (Aib)9 and permeation of a small benzoic acid molecule through a synthetic, symmetric phospholipid bilayer. In addition to significantly accelerating the dynamics and achieving back and forth movement between different metastable states, the SPIB-based reaction coordinate gives mechanistic insights into the processes driving these two important problems.


Assuntos
Inteligência Artificial , Simulação de Dinâmica Molecular , Peptídeos , Fosfolipídeos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA