Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(14): 4188-4200, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277700

RESUMO

Adoption of rice varieties that perform well under high iron-associated (HIA) stress environments can enhance rice production in West Africa. This study reports the genetic characterization of 323 rice accessions and breeding lines cultivated in West Africa using genotyping-by-sequencing and their phenotypic response to HIA treatments in hydroponic solution (1500 mg l-1 FeSO4·7H2O) and hot-spot fields. The germplasm consisted of four genetic subpopulations: Oryza glaberrima (14%), O. sativa-japonica (7%), O. sativa-indica Group 1 (45%), and O. sativa-indica Group 2 (25%). Severe versus mild stress in the field was associated with a reduced SPAD value (12%), biomass (56%), and grain yield (57%), with leaf bronzing explaining 30% and 21% of the variation for biomass and grain yield, respectively. Association mapping using 175 indica genotypes identified 23 significant single nucleotide polymorphism (SNP) markers that mapped to 14 genomic regions. Genome-wide association study (GWAS) signals associated with leaf bronzing, a routinely used indicator of HIA stress, differed in hydroponic compared with field conditions. Contrastingly, six significant SNPs on chromosomes 8 and 9 were associated with the SPAD value under HIA stress in both field and hydroponic experiments, and a candidate potassium transporter gene mapped under the peak on chromosome 8. This study helps define criteria for assessing rice performance under HIA environments.


Assuntos
Oryza , África Ocidental , Estudo de Associação Genômica Ampla , Ferro , Oryza/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
2.
Science ; 361(6398): 181-186, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30002253

RESUMO

Most plants do poorly when flooded. Certain rice varieties, known as deepwater rice, survive periodic flooding and consequent oxygen deficiency by activating internode growth of stems to keep above the water. Here, we identify the gibberellin biosynthesis gene, SD1 (SEMIDWARF1), whose loss-of-function allele catapulted the rice Green Revolution, as being responsible for submergence-induced internode elongation. When submerged, plants carrying the deepwater rice-specific SD1 haplotype amplify a signaling relay in which the SD1 gene is transcriptionally activated by an ethylene-responsive transcription factor, OsEIL1a. The SD1 protein directs increased synthesis of gibberellins, largely GA4, which promote internode elongation. Evolutionary analysis shows that the deepwater rice-specific haplotype was derived from standing variation in wild rice and selected for deepwater rice cultivation in Bangladesh.


Assuntos
Adaptação Fisiológica , Etilenos/metabolismo , Inundações , Genes de Plantas/fisiologia , Giberelinas/fisiologia , Oryza/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Alelos , Giberelinas/genética , Haplótipos , Oryza/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA