Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 18(1): 566, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537622

RESUMO

BACKGROUND: Syndesmosis injury is proposed to contribute to ankle stability and osteoarthritis (OA). However, whether distal tibiofibular syndesmosis structure is closely related to ankle OA is unclear. We hypothesized that different DTS morphology classifications would affect the biomechanics properties in ankle OA. The study aimed to determine the association between the distal tibiofibular syndesmosis (DTS) morphological classification and ankle OA. METHODS: This is a retrospective study examining imaging data of 147 patients (87 males and 60 females) with ankle OA. Magnetic resonance imaging was used to access the DTS morphological classification, according to measuring various parameters. Joint space narrowing and osteophytes were measured using ankle weight-bearing radiography. The classification and parameters were analyzed to determine the relationship between the syndesmosis classification and the abnormality of ankle OA. RESULTS: Five morphological classifications of the DTS, including Chevron (19.6%), Widow's peak (16.2%), Flat (22.3%), Trapezoid (32.0%), and Crescent (19.6%), were shown. There were statistical differences between DTS classification and tibial angle surface angle (TAS) (P = .009) and talar tilt angle (TTA) (P = .014). The TAS (degree) of the Crescent (86.47 ± 3.21) was less than Chevron (88.75 ± 2.72) (P = .006), Widow's peak (89.26 ± 3.15) (P = .001), Flat (88.83 ± 3.62) (P = .003) and Trapezoid (88.11 ± 2.62) (P = .041), respectively. The TTA (degree) of Crescent (86.83 ± 5.30) was less than Chevron (89.28 ± 2.46) and Widow's peak (89.82 ± 3.41). The men were greater than women for TAS (P = .008) and angle (P = .003), which are consistent with osteophyte (P = .019) and the modified Kellgren-Lawrence grades (P = .041) between gender. CONCLUSIONS: DTS morphological classification might affect the biomechanics properties in TAS and TTA in ankle OA. In clinical practice, surgeons should pay attention to the effects of DTS on ankle OA. LEVEL OF EVIDENCE: Level III, retrospective study.


Assuntos
Osteoartrite , Osteófito , Masculino , Humanos , Feminino , Estudos Retrospectivos , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/cirurgia , Tornozelo , Osteoartrite/diagnóstico por imagem , Tíbia/anatomia & histologia , Osteófito/diagnóstico por imagem
2.
Polymers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299222

RESUMO

Around a quarter of annual worldwide silver consumption comes from recycling. It remains a primary target for researchers to increase the silver ion adsorption capacity of the chelate resin. Herein, a series of flower-like thiourea-formaldehyde microspheres (FTFM) possessing diameters of 15-20 µm were prepared via a one-step reaction under acidic conditions, and the effects of the monomer molar ratio and reaction time on the micro-flower morphology, specific surface area, and silver ion adsorption performance were explored. The nanoflower-like microstructure showed the maximum specific surface area 18.98 ± 0.949 m2/g, which was 55.8 times higher than that of the solid microsphere control. As a result, the maximum silver ion adsorption capacity was 7.95 ± 0.396 mmol/g, which was 10.9 times higher than that of the control. Kinetic studies showed that the equilibrium adsorption amount of FT1F4M was 12.61 ± 0.016 mmol/g, which was 11.6 times higher than that of the control. Additionally, the isotherm study of the adsorption process was performed, and the maximum adsorption capacity of FT1F4M was 18.17 ± 1.28 mmol/g, which was 13.8 times that of the control according to the Langmuir adsorption model. Its high absorption efficiency, convenient preparation strategy, and low cost recommend FTFM bright for further use in industrial applications.

3.
J Ultrasound Med ; 42(9): 1923-1939, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37079603

RESUMO

Tendon injuries are the most common soft tissue injuries, caused by tissue overuse and age-related degeneration. However, the tendon repair process is slow and inefficient due to the lack of cellular structure and blood vessels in the tendon. Low-intensity pulsed ultrasound (LIPUS) has received increasing attention as a non-invasive, simple, and safe way to promote tendon healing. This review summarizes the effects and underlying mechanisms of LIPUS on tendon injury by comprehensively examining the published literature, including in vitro, in vivo, and clinical studies. This review reviewed 24 studies, with 87.5% showing improvement. The application of LIPUS in tendon diseases is a promising field worthy of further study.


Assuntos
Traumatismos dos Tendões , Terapia por Ultrassom , Humanos , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/terapia , Cicatrização , Tendões/diagnóstico por imagem , Ondas Ultrassônicas
4.
Orthop Surg ; 14(3): 463-471, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35142050

RESUMO

Intervertebral disc degeneration (IDD) disease has been considered as the main cause of low back pain (LBP), which is a very common symptom and the leading cause of disability worldwide today. The pathological mechanism of IDD remains quite complicated, and genetic, developmental, biochemical, and biomechanical factors all contribute to the development of the disease. There exists no effective, non-surgical treatment for IDD nowadays, which is largely related to the lack of knowledge of the specific mechanisms of IDD, and the lack of effective specific targets. Recently, non-coding RNA, including miRNA, has been recognized as an important regulator of gene expression. Current studies on the effects of miRNA in IDD have confirmed that a variety of miRNAs play a crucial role in the process of IDD via nucleus pulposus cells (NPC) apoptosis, abnormal proliferation, inflammatory factors, the extracellular matrix (ECM) degradation, and annulus fibrosus (AF) degeneration. In the past 10 years, research on miRNA has been quite active in IDD. This review summarizes the current research progression of miRNA in the IDD and puts forward some prospects and challenges on non-surgical treatment for IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , MicroRNAs , Núcleo Pulposo , Apoptose , Humanos , Disco Intervertebral/fisiopatologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , MicroRNAs/genética , Núcleo Pulposo/fisiopatologia
5.
Orthop Surg ; 13(3): 734-741, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33817978

RESUMO

Intervertebral disc degeneration (IDD) is widely recognized as the main cause of low back pain, which leads to disability in aging populations and induces great losses both socially and economically worldwide. Unfortunately, current treatments for IDD are aimed at relieving symptoms instead of preserving disc structure and function. Researchers are forged to find new promising biological therapeutics to stop, and even reverse, IVD degeneration. Recently, the injection of growth factors has been shown to be a promising biological therapy for IDD. A number of growth factors have been investigated to modulate the synthesis of the extracellular matrix (ECM) through a variety of pathogenetic biological mechanisms, including suppressing inflammatory process and down-regulating degrading enzymes. However, growth factors, including Transforming Growth Factor-ß (TGF-ß), Fibroblast Growth Factor (FGF), and Insulin-like Growth Factor-1 (IGF-1), may induce unwanted blood vessel in-growth, which accelerates the process of IDD. On the contrary, studies have demonstrated that injection of GDF-5 into the intervertebral disc of mice can effectively alleviate the degeneration of the intervertebral disc, which elicits their response via BMPRII and will not induce blood vessel in-growth. This finding suggests that GDF-5 is more suitable for use in IDD treatment compared with the three other growth factors. Substantial evidence has suggested that GDF-5 may maintain the structure and function of the intervertebral disc (IVD). GDF-5 plays an important role in IDD and is a very promising therapeutic agent for IDD. This review is focused on the mechanisms and functions of GDF-5 in IDD.


Assuntos
Fator 5 de Diferenciação de Crescimento/metabolismo , Degeneração do Disco Intervertebral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA