Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Immunol ; 25(1): 33, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834979

RESUMO

PURPOSE: Severe community-acquired pneumonia (SCAP) is a common respiratory system disease with rapid development and high mortality. Exploring effective biomarkers for early detection and development prediction of SCAP is of urgent need. The function of miR-486-5p in SCAP diagnosis and prognosis was evaluated to identify a promising biomarker for SCAP. PATIENTS AND METHODS: The serum miR-486-5p in 83 patients with SCAP, 52 healthy individuals, and 68 patients with mild CAP (MCAP) patients were analyzed by PCR. ROC analysis estimated miR-486-5p in screening SCAP, and the Kaplan-Meier and Cox regression analyses evaluated the predictive value of miR-486-5p. The risk factors for MCAP patients developing SCAP were assessed by logistic analysis. The alveolar epithelial cell was treated with Klebsiella pneumonia to mimic the occurrence of SCAP. The targeting mechanism underlying miR-486-5p was evaluated by luciferase reporter assay. RESULTS: Upregulated serum miR-486-5p screened SCAP from healthy individuals and MCAP patients with high sensitivity and specificity. Increasing serum miR-486-5p predicted the poor outcomes of SCAP and served as a risk factor for MCAP developing into SCAP. K. pneumonia induced suppressed proliferation, significant inflammation and oxidative stress in alveolar epithelial cells, and silencing miR-486-5p attenuated it. miR-486-5p negatively regulated FOXO1, and the knockdown of FOXO1 reversed the effect of miR-486-5p in K. pneumonia-treated alveolar epithelial cells. CONCLUSION: miR-486-5p acted as a biomarker for the screening and monitoring of SCAP and predicting the malignancy of MCAP. Silencing miR-486-5p alleviated inflammation and oxidative stress induced by K. pneumonia via negatively modulating FOXO1.


Assuntos
Infecções Comunitárias Adquiridas , Proteína Forkhead Box O1 , Infecções por Klebsiella , MicroRNAs , Humanos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , MicroRNAs/genética , Infecções Comunitárias Adquiridas/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Infecções por Klebsiella/diagnóstico , Prognóstico , Biomarcadores , Klebsiella pneumoniae/fisiologia , Idoso , Fatores de Risco , Células Epiteliais Alveolares/metabolismo , Pneumonia/genética , Estresse Oxidativo/genética
2.
Front Pharmacol ; 15: 1385565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751790

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660875

RESUMO

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Assuntos
Transplante de Medula Óssea , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Microambiente Celular , Medula Óssea , Ratos
4.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153253

RESUMO

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Assuntos
Osteoartrite , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Humanos , Ratos , Necroptose , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Osteoblastos/metabolismo , Osteoblastos/patologia , Células-Tronco/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia
5.
Stem Cell Res Ther ; 14(1): 253, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752608

RESUMO

BACKGROUND: Though articular cartilage stem cell (ACSC)-based therapies have been demonstrated to be a promising option in the treatment of diseased joints, the wide variety of cell isolation, the unknown therapeutic targets, and the incomplete understanding of the interactions of ACSCs with diseased microenvironments have limited the applications of ACSCs. METHODS: In this study, the human ACSCs have been isolated from osteoarthritic articular cartilage by advantage of selection of anatomical location, the migratory property of the cells, and the combination of traumatic injury, mechanical stimuli and enzymatic digestion. The protective effects of ACSC infusion into osteoarthritis (OA) rat knees on osteochondral tissues were evaluated using micro-CT and pathological analyses. Moreover, the regulation of ACSCs on osteoarthritic osteoclasts and the underlying mechanisms in vivo and in vitro were explored by RNA-sequencing, pathological analyses and functional gain and loss experiments. The one-way ANOVA was used in multiple group data analysis. RESULTS: The ACSCs showed typical stem cell-like characteristics including colony formation and committed osteo-chondrogenic capacity. In addition, intra-articular injection into knee joints yielded significant improvement on the abnormal subchondral bone remodeling of osteoarthritic rats. Bioinformatic and functional analysis showed that ACSCs suppressed osteoarthritic osteoclasts formation, and inflammatory joint microenvironment augmented the inhibitory effects. Further explorations demonstrated that ACSC-derived tumor necrosis factor alpha-induced protein 3 (TNFAIP3) remarkably contributed to the inhibition on osteoarhtritic osteoclasts and the improvement of abnormal subchondral bone remodeling. CONCLUSION: In summary, we have reported an easy and reproducible human ACSC isolation strategy and revealed their effects on subchondral bone remodeling in OA rats by releasing TNFAIP3 and suppressing osteoclasts in a diseased microenvironment responsive manner.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Animais , Ratos , Osteoartrite do Joelho/terapia , Osteoclastos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Células-Tronco , Remodelação Óssea
6.
Int J Biol Macromol ; 251: 126308, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573919

RESUMO

It is of great significance to develop natural renewable polymer materials for different applications. Herein, the nano-sized hexagonal boron nitride nanosheets (hBNNSs) were facilely exfoliated through liquid-nitrogen, microwave, and ultrasonication treatments, and novel chitosan/hBNNSs (CS/hBNNSs) films were fabricated via solution casting. The obtained transparent CS/hBNNSs films demonstrated outstanding UV shielding ability with 98.51 % UV-A and 96.40 % UV-B lights being resisted. Compared to those properties of CS film, the oxygen permeability (OP) and carbon dioxide permeability (CO2P) of CS/hBNNSs films are significantly lowered by 96.35 % and 94.06 %, respectively, which are much better than CS/graphene oxide or other CS nanocomposite films. Moreover, the addition of hBNNSs in CS films also obviously improves their water vapor barrier ability, thermostability, mechanical properties, and antibacterial activity. The CS/hBNNSs films and the strategy developed in this work prove their great prospect in producing high-performance packaging films with desirable excellent UV shielding and oxygen barrier qualities.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 233-240, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765505

RESUMO

OBJECTIVE: To establish an intestinal organoid model that mimic acute graft versus host disease (aGVHD) caused intestinal injuries by using aGVHD murine model serum and organoid culture system, and explore the changes of aGVHD intestine in vitro by advantage of organoid technology. METHODS: 20-22 g female C57BL/6 mice and 20-22 g female BALB/c mice were used as donors and recipients for bone marrow transplantation, respectively. Within 4-6 h after receiving a lethal dose (8.0 Gy) of γ ray total body irradiation, a total of 0.25 ml of murine derived bone marrow cells (1×107/mice, n=20) and spleen nucleated cells (5×106/mice, n=20) was infused to establish a mouse model of aGVHD (n=20). The aGVHD mice were anesthetized at the 7th day after transplantation, and the veinal blood was harvested by removing the eyeballs, and the serum was collected by centrifugation. The small intestinal crypts of healthy C57BL/6 mice were harvested and cultivated in 3D culture system that maintaining the growth and proliferation of intestinal stem cells in vitro. In our experiment, 5%, 10%, 20% proportions of aGVHD serum were respectively added into the organoid culture system for 3 days. The formation of small intestinal organoids were observed under an inverted microscope and the morphological characteristics of intestinal organoids in each groups were analyzed. For further evaluation, the aGVHD intestinal organoids were harvested and their pathological changes were observed. Combined with HE staining, intestinal organ morphology evaluation was performed. Combined with Alcian Blue staining, the secretion function of aGVHD intestinal organoids was observed. The distribution and changes of Lgr5+ and Clu+ intestinal stem cells in intestinal organoids were analyzed under the conditions of 5%, 10% and 20% serum concentrations by immunohistochemical stainings. RESULTS: The results of HE staining showed that the integrity of intestinal organoids in the 5% concentration serum group was better than that in the 10% and 20% groups. The 5% concentration serum group showed the highest number of organoids, the highest germination rate and the lowest pathological score among experimental groups, while the 20% group exhibited severe morphological destruction and almost no germination was observed, and the pathological score was the highest among all groups(t=3.668, 4.334,5.309,P<0.05). The results of Alican blue staining showed that the secretion function of intestinal organoids in serum culture of aGVHD in the 20% group was weaker than that of the 5% group and 10% of the organoids, and there was almost no goblet cells, and mucus was stainned in the 20% aGVHD serum group. The immunohistochemical results showed that the number of Lgr5+ cells of intestinal organoids in the 5% group was more than that of the intestinal organoids in the 10% aGVHD serum group and 20% aGVHD serum group. Almost no Clu+ cells were observed in the 5% group. The Lgr5+ cells in the 20% group were seriously injuried and can not be observed. The proportion of Clu+ cells in the 20% group significantly increased. CONCLUSION: The concentration of aGVHD serum in the culture system can affect the number and secretion function of intestinal organoids as well as the number of intestinal stem cells in organoids. The higher the serum concentration, the greater the risk of organoid injury, which reveal the characteristics of the formation and functional change of aGVHD intestinal organoids, and provide a novel tool for the study of intestinal injury in aGVHD.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Células-Tronco , Organoides
8.
Heliyon ; 9(1): e12788, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685387

RESUMO

Aims: The osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) plays a critical role in fracture healing. Osteogenic differentiation is regulated by a variety of post-translational modifications, but the function of protein palmitoylation in osteogenesis remains largely unknown. Methods: Osteogenic differentiation induction of hBMSCs was used in this study. RT‒qPCR and immunoblotting assays (WB) were used to test marker genes of osteogenic induction. Alkaline phosphatase (ALP) activity, ALP staining and Alizarin red staining were performed to evaluate osteogenesis of hBMSCs. Signal finder pathway reporter array, co-immunoprecipitation and WB were applied to elucidate the molecular mechanism. A mouse fracture model was used to verify the in vivo function of the ZDHHC inhibitor. Key findings: We revealed that palmitic acid inhibited Runx2 mRNA expression in hBMSCs and identified ZDHHC16 as a potential target palmitoyl acyltransferase. In addition, ZDHHC16 decreased during osteogenic induction. Next, we confirmed the inhibitory function of ZDHHC16 by its knockdown or overexpression during osteogenesis of hBMSCs. Moreover, we illustrated that ZDHHC16 inhibited the phosphorylation of CREB, thus inhibiting osteogenesis of hBMSCs by enhancing the palmitoylation of CREB. With a mouse femur fracture model, we found that 2-BP, a general inhibitor of ZDHHCs, promoted fracture healing in vivo. Thus, we clarified the inhibitory function of ZDHHC16 during osteogenic differentiation. Significance: Collectively, these findings highlight the inhibitory function of ZDHHC16 in osteogenesis as a potential therapy method for fracture healing.

9.
Front Chem ; 10: 1042038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300028

RESUMO

ZnO quantum dots (QDs) have received much attention as biomarkers and drug delivery systems in cancer treatment, due to their low cost, ease of preparation, and pH-responsive degradation. However, its applications are limited by the low quantum yield and light absorption. In this work, a lanthanum-doped zinc oxide (La-ZnO) QDs-based drug delivery platform was constructed. The results show that 4% La doping is the most beneficial for improving the fluorescent properties of the ZnO QDs. After loading the drug, the cell activity was 15% at ZnO@DOX and 12% at La-ZnO@DOX. According to in vitro and in vivo experiment results, the La-ZnO QDs show enhancement of the antitumor effect. Dual enhancement of fluorescence and anti-tumor effects make La-ZnO QDs promising as a drug delivery system in cancer treatment.

10.
Front Pharmacol ; 13: 983821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060002

RESUMO

Patients with breast cancer are prone to SARS-CoV-2 infection [the causative virus of coronavirus disease (COVID-19)] due to their lack of immunity. In the current study, we examined the mechanism of action of Diosmetin, a flavonoid with anti-inflammatory properties, in patients with BRCA infected with SARS-CoV-2.We used bioinformatics technology to analyze the binding ability, biological function, and other biological characteristics of Diosmetin in vivo and examine the core target and potential mechanism of action of Diosmetin in patients with patients with breast cancer infected with SARS-CoV-2. A prognostic model of SARS-COV-2-infected breast cancer patients was constructed, and the core genes were screened out, revealing the correlation between these core genes and clinicopathological characteristics, survival rate, and high-risk and low-risk populations. The docking results revealed that Diosmetin binds well to the core genes of patients with breast cancer with COVID-19. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that Diosmetin inhibited inflammation, enhanced immune function, and regulated the cellular microenvironment in patients with BRCA/COVID-19. For the first time, we reveal the molecular functions and potential targets of Diosmetin in patients with breast cancer infected with SARS-CoV-2, improving the reliability of the new drug and laying the foundation for further research and development.

11.
Jt Dis Relat Surg ; 33(2): 273-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35852185

RESUMO

OBJECTIVES: This study aims to point out the key principles for the management of multicomponent soft tissue injuries of the wrist and forearm to discuss whether we should expand the term "spaghetti" from the wrist to forearm in such terrifying cases. PATIENTS AND METHODS: Data from a total of 50 patients (44 males, 6 females; mean age: 48.5±25.7 years; range, 10 to 70 years) who were treated for multicomponent soft tissue injuries of the wrist and forearm, including at least one major artery and one major nerve, between February 2020 and December 2021 were retrospectively analyzed. The patients were divided into the wrist injury group (n=30) and forearm injury group (n=20) according to the location of laceration. Demographic characteristics, including age, sex ratio and mechanism and side of injury, total lacerated structures, and outcomes, including tendon function, opposition, intrinsic muscle function, deformities, sensation and grip strength were evaluated. RESULTS: In the wrist injury group, a mean of 12.27±3.53 structures at the volar side were injured. It took a mean time of 1.8±0.4 h for emergency surgical repair and, after a mean of 16.6±5.3 month follow-up, most patients received excellent/good outcomes in the six aspects. In the forearm injury group, a mean of 12.95±2.96 structures at the volar side were injured. It took an average time of 2.1±0.4 h for emergency surgical repair and, after a mean of 15.4±6.4 month follow-up, most patients received excellent/good outcomes and were satisfied with the functional recovery. Only surgical time (p=0.018) and final grip strength (p=0.023) between the two groups showed a statistically significant difference. CONCLUSION: We propose to merge the severe wrist and proximal forearm laceration of multiple tendons/muscles with at least one major artery and one major nerve as a whole, namely the spaghetti-ketchup injury, since the laceration of wrist and that of proximal forearm in this study share similar mechanisms and outcomes after primary repair or reconstruction.


Assuntos
Traumatismos do Antebraço , Lacerações , Lesões dos Tecidos Moles , Traumatismos do Punho , Adolescente , Adulto , Idoso , Criança , Feminino , Antebraço , Traumatismos do Antebraço/diagnóstico , Traumatismos do Antebraço/cirurgia , Humanos , Lacerações/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Lesões dos Tecidos Moles/cirurgia , Punho , Traumatismos do Punho/diagnóstico , Traumatismos do Punho/cirurgia , Adulto Jovem
12.
BMC Genomics ; 23(1): 318, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448973

RESUMO

BACKGROUND: The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS: In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS: In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.


Assuntos
Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo
13.
Front Surg ; 9: 1078933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684330

RESUMO

Objective: The study aims to compare the implementation and prognosis of emergency digit replantation surgery before and after normalized corona virus disease 2019 (COVID-19) nucleic acid testing for patients taking emergency operation and to explore the influence of normalized COVID-19 nucleic acid testing on replantation surgery. Method: Normalized COVID-19 nucleic acid testing for patients taking emergency operation has been carried out since 1 August 2021 at our hospital, which means each patient who needs emergency surgical treatment has to obtain either positive or negative results of COVID-19 nucleic acid before entering the operating room. This research reviewed and compared the prognosis of the injured extremity that had emergency severed digit replantation between June and September 2021, at the Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and analyzed the impact of normalized COVID-19 nucleic acid testing on the outcome of the replanted fingers of different severity using disability of arm-shoulder-hand (DASH) and hand injury severity scoring (HISS) scoring systems. Results: A total of 54 cases with 74 severed replanted phalanges were included replanted by the research group between 1 August and 30 September 2021, without any COVID-19 suspected/confirmed case detected. Compared with previous period (1 June to 31 July, 2021), although the interval between emergency visits and emergency replantation did increase significantly after normalized COVID-19 nucleic acid testing [(3.83 ± 0.94) to (1.77 ± 0.67) h, P < 0.05], we observed no significant difference in the improvement rate of the DASH scoring of the disabled upper extremity 3-month postoperatively (P = 0.538) nor in the complication rate (P = 0.344). Moreover, there was no significant difference in the improvement rate of the DASH scoring of the disabled upper extremity 3-month postoperatively in patients with different traumatic severities before and after normalized COVID-19 nucleic acid testing (moderate P = 0.269, severe P = 0.055, major P = 0.149). Conclusion: Despite the preoperative delay, the policy of COVID-19 nucleic acid testing normalization does not have explicit influence on the short-term outcomes of emergency digit replantation surgery. With this evidence, microsurgeons could pay attention to the patients' anxiety and spend more effort in comforting them during the prolonged preoperative wait. These insights may have implications for other emergency department resource management whenever a social crisis occurs.

14.
Int J Biol Macromol ; 192: 1240-1255, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678381

RESUMO

In recent years, nanoparticles (NPs) derived from the self-assembly of natural polysaccharides have shown great potential in the biomedical field. Here, we described several self-assembly modes of natural polysaccharides in detail, summarized the natural polysaccharides mostly used for self-assembly, and provided insights into the current applications and achievements of these self-assembled NPs. As one of the most widespread substances in nature, most natural polysaccharides exhibit advantages of biodegradability, low immunogenicity, low toxicity, and degradable properties. Therefore, they have been fully explored, and the application of chitosan, hyaluronic acid, alginate, starch, and their derivatives has been extensively studied, especially in the fields of biomedical. Polysaccharides based NPs were proved to improve the solubility of insoluble drugs, enhance tissue target ability and realize the controlled and sustained release of drugs. When modified by hydrophobic groups, the amphiphilic polysaccharides can self-assemble into NPs. Other driven forces of self-assembly include electrostatic interaction and hydrogen bonds. Up to the present, polysaccharides-based nanoparticles have been widely applied for tumor treatment, antibacterial application, gene therapy, photodynamic therapy and transporting insulin.


Assuntos
Produtos Biológicos/química , Biotecnologia , Nanomedicina , Nanopartículas/química , Polissacarídeos/química , Biotecnologia/métodos , Fenômenos Químicos , Desenvolvimento de Medicamentos/métodos , Terapia Genética , Humanos , Nanomedicina/métodos , Relação Estrutura-Atividade
15.
Cancer Med ; 10(22): 8192-8209, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598322

RESUMO

BACKGROUND: As the second most common malignancy in adults, papillary renal cell carcinoma (PRCC) has shown an increasing trend in both incidence and mortality. Effective treatment for advanced metastatic PRCC is still lacking. In this study, we aimed to establish competitive endogenous RNA (ceRNA) networks related to PRCC tumorigenesis, and analyze the specific role of differentially expressed ceRNA components and infiltrating immune cells in tumorigenesis. METHODS: CeRNA networks were established to identify the key ceRNAs related to PRCC tumorigenesis based on the 318 samples from The Cancer Genome Atlas database (TCGA), including 285 PRCC and 33 normal control samples. The R package, "CIBERSORT," was used to evaluate the infiltration of 22 types of immune cells. Then we identified the significant ceRNAs and immune cells, based on which two nomograms were obtained for predicting the prognosis in PRCC patients. Finally, we investigated the co-expression of PRCC-specific immune cells and core ceRNAs via Pearson correlation test. RESULTS: COL1A1, H19, ITPKB, LDLR, TCF4, and WNK3 were identified as hub genes in ceRNA networks. Four prognostic-related tumor-infiltrating immune cells, including T cells CD4 memory resting, Macrophages M1, and Macrophages M2 were revealed. Pearson correlation test indicated that Macrophage M1 was negatively related with COL1A1 (p < 0.01) and LDLR (p < 0.01), while Macrophage M2 was positively related with COL1A1 (p < 0.01), TCF4 (p < 0.01), and H19 (p = 0.032). Two nomograms were conducted with favorable accuracies (area under curve of 1-year survival: 0.935 and 0.877; 3-year survival: 0.849 and 0.841; and 5-year survival: 0.818 and 0.775, respectively). CONCLUSION: The study constructed two nomograms suited for PRCC prognosis predicting. Moreover, we concluded that H19-miR-29c-3p-COL1A1 axis might promote the polarization of M2 macrophages and inhibit M1 macrophage activation through Wnt signaling pathway, collaborating to promote PRCC tumorigenesis and lead to poor overall survival of PRCC patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Redes Reguladoras de Genes/genética , Neoplasias Renais/genética , MicroRNAs/genética , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/patologia , Prognóstico
16.
J Vis Exp ; (175)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34605806

RESUMO

RNA sequencing (RNA-seq) is one of the most widely used technologies in transcriptomics as it can reveal the relationship between the genetic alteration and complex biological processes and has great value in diagnostics, prognostics, and therapeutics of tumors. Differential analysis of RNA-seq data is crucial to identify aberrant transcriptions, and limma, EdgeR and DESeq2 are efficient tools for differential analysis. However, RNA-seq differential analysis requires certain skills with R language and the ability to choose an appropriate method, which is lacking in the curriculum of medical education. Herein, we provide the detailed protocol to identify differentially expressed genes (DEGs) between cholangiocarcinoma (CHOL) and normal tissues through limma, DESeq2 and EdgeR, respectively, and the results are shown in volcano plots and Venn diagrams. The three protocols of limma, DESeq2 and EdgeR are similar but have different steps among the processes of the analysis. For example, a linear model is used for statistics in limma, while the negative binomial distribution is used in edgeR and DESeq2. Additionally, the normalized RNA-seq count data is necessary for EdgeR and limma but is not necessary for DESeq2. Here, we provide a detailed protocol for three differential analysis methods: limma, EdgeR and DESeq2. The results of the three methods are partly overlapping. All three methods have their own advantages, and the choice of method only depends on the data.


Assuntos
Perfilação da Expressão Gênica , Software , RNA , Análise de Sequência de RNA , Transcriptoma
17.
J Oncol ; 2021: 5523749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484333

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) is an extremely lethal gynecological malignancy and has the potential to benefit from the immune checkpoint blockade (ICB) therapy, whose efficacy highly depends on the complex tumor microenvironment (TME). METHOD AND RESULT: We comprehensively analyze the landscape of TME and its prognostic value through immune infiltration analysis, somatic mutation analysis, and survival analysis. The results showed that high infiltration of immune cells predicts favorable clinical outcomes in EOC. Then, the detailed TME landscape of the EOC had been investigated through "xCell" algorithm, Gene set variation analysis (GSVA), cytokines expression analysis, and correlation analysis. It is observed that EOC patients with high infiltrating immune cells have an antitumor phenotype and are highly correlated with immune checkpoints. We further found that dendritic cells (DCs) may play a dominant role in promoting the infiltration of immune cells into TME and forming an antitumor immune phenotype. Finally, we conducted machine-learning Lasso regression, support vector machines (SVMs), and random forest, identifying six DC-related prognostic genes (CXCL9, VSIG4, ALOX5AP, TGFBI, UBD, and CXCL11). And DC-related risk stratify model had been well established and validated. CONCLUSION: High infiltration of immune cells predicted a better outcome and an antitumor phenotype in EOC, and the DCs might play a dominant role in the initiation of antitumor immune cells. The well-established risk model can be used for prognostic prediction in EOC.

18.
Eur J Pharmacol ; 909: 174386, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332919

RESUMO

Trauma-induced heterotopic ossification (HO) is the aberrant extra-skeletal bone formation that severely incapacitates patient's daily life. Inflammation is the first stage of this progression, becoming an appealing target of early therapeutic intervention. Metformin, a widely used antidiabetic drug, also poses the therapeutic potential to modulate various inflammatory-related diseases. Therefore, this study aimed to investigate the preventive effect of metformin on trauma-induced HO progression, and unveil the underlying molecular mechanisms. A murine burn/tenotomy model was established to mimic trauma-induced HO in vivo. The anti-inflammation and anti-ossification effects of metformin were evaluated by histological staining and micro-CT. The inhibitory effects of metformin on macrophages activation in vitro were examined by ELISA and qRT-PCR. The underlying molecular mechanisms were further explored by immunofluorescence staining and western-blotting in vivo. Increased macrophages infiltration and inflammatory responses were found at early stage during HO progression. However, metformin dose-dependently attenuated the macrophage-mediated inflammatory responses both in vivo and vitro, which might account for the inhibitory effect of metformin on chondrogenesis and HO formation after trauma. Furthermore, elevated SIRT1 expression and decreased NF-κB p65 acetylation were found in the beneficial effects of metformin. Moreover, similar preventive effects were also found in SRT1720 HCI, a specific SIRT1 activator, while were remarkably reversed after the administration of EX527 (a specific SIRT1 inhibitor) with metformin. Taken together, our results provide a novel evidence that metformin can effectively attenuate trauma-induced HO by mitigating macrophage inflammatory responses through inhibiting NF-κB signaling via SIRT1-dependent mechanisms, which favors future therapeutic investigations for trauma-related disease.


Assuntos
Queimaduras/tratamento farmacológico , Metformina/farmacologia , Ossificação Heterotópica/prevenção & controle , Sirtuína 1/metabolismo , Traumatismos dos Tendões/tratamento farmacológico , Animais , Queimaduras/complicações , Queimaduras/imunologia , Queimaduras/patologia , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metformina/uso terapêutico , Camundongos , Ossificação Heterotópica/imunologia , Ossificação Heterotópica/patologia , Traumatismos dos Tendões/complicações , Traumatismos dos Tendões/patologia , Tendões/efeitos dos fármacos , Tendões/patologia , Tenotomia/efeitos adversos
19.
Onco Targets Ther ; 14: 2651-2660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33883908

RESUMO

PURPOSE: To investigate the clinicopathological characteristics and immunophenotype of desmoplastic melanoma (DM) in the Chinese population. PATIENTS AND METHODS: We report three cases of DM diagnosed by the Pathology Department of Shanghai Dermatology Hospital. We describe the clinical and pathological characteristics of the three cases and examine molecular markers used in the diagnosis of DM. Finally, we summarize the current literature in the DM field. RESULTS: Clinically, lesions in the three DM patients were characterized by non-pigmented nodules or papules. Microscopically, we observed an abundance of fibrous interstitium mixed with spindle cells exhibiting various degrees of atypia. Occasionally, these structures exhibited changes in lentigo maligna at the epidermal junction, accompanied by the presence of lymphoid follicular structures and neurophilic behavior. Diagnosis of DM was confirmed by immunohistochemical staining, which revealed high expression levels of S-100 and SOX-10. Melanocyte markers were focally positive or negative. Unlike DMs from other populations, our three patients were negative for WT-1 and P53. All three cases received surgical resection, which is the preferred treatment for DM, and none of the patients experienced recurrence. CONCLUSION: DM in these Chinese patients was similar to that observed in other DM populations in terms of immunophenotype and clinical and histological features. A notable absence in p53 staining was observed in the three cases reported here, suggesting that p53 negativity should not exclude the diagnosis of DM in the Chinese population.

20.
Bone Joint J ; 103-B(2): 366-372, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33517717

RESUMO

AIMS: This study aimed to determine the minimal detectable change (MDC), minimal clinically important difference (MCID), and substantial clinical benefit (SCB) under distribution- and anchor-based methods for the Mayo Elbow Performance Index (MEPI) and range of movement (ROM) after open elbow arthrolysis (OEA). We also assessed the proportion of patients who achieved MCID and SCB; and identified the factors associated with achieving MCID. METHODS: A cohort of 265 patients treated by OEA were included. The MEPI and ROM were evaluated at baseline and at two-year follow-up. Distribution-based MDC was calculated with confidence intervals (CIs) reflecting 80% (MDC 80), 90% (MDC 90), and 95% (MDC 95) certainty, and MCID with changes from baseline to follow-up. Anchor-based MCID (anchored to somewhat satisfied) and SCB (very satisfied) were calculated using a five-level Likert satisfaction scale. Multivariate logistic regression of factors affecting MCID achievement was performed. RESULTS: The MDC increased substantially based on selected CIs (MDC 80, MDC 90, and MDC 95), ranging from 5.0 to 7.6 points for the MEPI, and from 8.2° to 12.5° for ROM. The MCID of the MEPI were 8.3 points under distribution-based and 12.2 points under anchor-based methods; distribution- and anchor-based MCID of ROM were 14.1° and 25.0°. The SCB of the MEPI and ROM were 17.3 points and 43.4°, respectively. The proportion of the patients who attained anchor-based MCID for the MEPI and ROM were 74.0% and 94.7%, respectively; furthermore, 64.2% and 86.8% attained SCB. Non-dominant arm (p = 0.022), higher preoperative MEPI rating (p < 0.001), and postoperative visual analogue scale pain score (p < 0.001) were independent predictors of not achieving MCID for the MEPI, while atraumatic causes (p = 0.040) and higher preoperative ROM (p = 0.005) were independent risk factors for ROM. CONCLUSION: In patients undergoing OEA, the MCID for the increased MEPI is 12.2 points and 25° increased ROM. The SCB is 17.3 points and 43.3°, respectively. Future studies using the MEPI and ROM to assess OEA outcomes should report not only statistical significance but also clinical importance. Cite this article: Bone Joint J 2021;103-B(2):366-372.


Assuntos
Articulação do Cotovelo/cirurgia , Artropatias/cirurgia , Diferença Mínima Clinicamente Importante , Procedimentos Ortopédicos , Amplitude de Movimento Articular , Adolescente , Adulto , Idoso , Criança , Articulação do Cotovelo/fisiopatologia , Feminino , Seguimentos , Humanos , Artropatias/fisiopatologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente/estatística & dados numéricos , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA