Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 215, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853389

RESUMO

BACKGROUND: Seleno-methylselenocysteine (SeMCys) is an effective component of selenium supplementation with anti-carcinogenic potential that can ameliorate neuropathology and cognitive deficits. In a previous study, a SeMCys producing strain of Bacillus subtilis GBACB was generated by releasing feedback inhibition by overexpression of cysteine-insensitive serine O-acetyltransferase, enhancing the synthesis of S-adenosylmethionine as methyl donor by overexpression of S-adenosylmethionine synthetase, and expressing heterologous selenocysteine methyltransferase. In this study, we aimed to improve GBACB SeMCys production by synthesizing methylmethionine as a donor to methylate selenocysteine and by inhibiting the precursor degradation pathway. RESULTS: First, the performance of three methionine S-methyltransferases that provide methylmethionine as a methyl donor for SeMCys production was determined. Integration of the NmMmt gene into GBACB improved SeMCys production from 20.7 to 687.4 µg/L. Next, the major routes for the degradation of selenocysteine, which is the precursor of SeMCys, were revealed by comparing selenocysteine hyper-accumulating and non-producing strains at the transcriptional level. The iscSB knockout strain doubled SeMCys production. Moreover, deleting sdaA, which is responsible for the degradation of serine as a precursor of selenocysteine, enhanced SeMCys production to 4120.3 µg/L. Finally, the culture conditions in the flasks were optimized. The strain was tolerant to higher selenite content in the liquid medium and the titer of SeMCys reached 7.5 mg/L. CONCLUSIONS: The significance of methylmethionine as a methyl donor for SeMCys production in B. subtilis is reported, and enhanced precursor supply facilitates SeMCys synthesis. The results represent the highest SeMCys production to date and provide insight into Se metabolism.


Assuntos
Selênio , Vitamina U , Selenocisteína/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cisteína/metabolismo , Selênio/metabolismo
2.
Appl Microbiol Biotechnol ; 107(9): 2843-2854, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941436

RESUMO

Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 µg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.


Assuntos
Bacillus subtilis , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Serina O-Acetiltransferase/metabolismo , Metionina Adenosiltransferase/metabolismo , Engenharia Metabólica , S-Adenosilmetionina/metabolismo
3.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770725

RESUMO

In the present study, lysozyme was purified by the following multi-step methodology: salt (ammonium sulfate) precipitation, dialysis, and ultrafiltration. The lysozyme potential was measured by enzymatic activity after each purification step. However, after ultrafiltration, the resulting material was considered extra purified. It was concentrated in an ultrafiltration centrifuge tube, and the resulting protein/lysozyme was used to determine its bactericidal potential against five bacterial strains, including three gram-positive (Bacillus subtilis 168, Micrococcus luteus, and Bacillus cereus) and two gram-negative (Salmonella typhimurium and Pseudomonas aeruginosa) strains. The results of ZOI and MIC/MBC showed that lysozyme had a higher antimicrobial activity against gram-positive than gram-negative bacterial strains. The results of the antibacterial activity of lysozyme were compared with those of ciprofloxacin (antibiotic). For this purpose, two indices were applied in the present study: antimicrobial index (AMI) and percent activity index (PAI). It was found that the purified lysozyme had a higher antibacterial activity against Bacillus cereus (AMI/PAI; 1.01/101) and Bacillus subtilis 168 (AMI/PAI; 1.03/103), compared to the antibiotic (ciprofloxacin) used in this study. Atomic force microscopy (AFM) was used to determine the bactericidal action of the lysozyme on the bacterial cell. The purified protein was further processed by gel column chromatography and the eluate was collected, its enzymatic activity was 21.93 U/mL, while the eluate was processed by native-PAGE. By this analysis, the un-denatured protein with enzymatic activity of 40.9 U/mL was obtained. This step shows that the protein (lysozyme) has an even higher enzymatic potential. To determine the specific peptides (in lysozyme) that may cause the bactericidal potential and cell lytic/enzymatic activity, the isolated protein (lysozyme) was further processed by the SDS-PAGE technique. SDS-PAGE analysis revealed different bands with sizes of 34 kDa, 24 kDa, and 10 kDa, respectively. To determine the chemical composition of the peptides, the bands (from SDS-PAGE) were cut, enzymatically digested, desalted, and analyzed by LC-MS (liquid chromatography-mass spectrometry). LC-MS analysis showed that the purified lysozyme had the following composition: the number of proteins in the sample was 56, the number of peptides was 124, and the number of PSMs (peptide spectrum matches) was 309. Among them, two peptides related to lysozyme and bactericidal activities were identified as: A0A1Q9G213 (N-acetylmuramoyl-L-alanine amidase) and A0A1Q9FRD3 (D-alanyl-D-alanine carboxypeptidase). The corresponding protein sequence and nucleic acid sequence were determined by comparison with the database.


Assuntos
Anti-Infecciosos , Bacillus , Muramidase/farmacologia , Muramidase/química , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Diálise Renal , Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Bacillus subtilis/metabolismo , Cromatografia em Gel , Bacillus cereus , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122285, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592594

RESUMO

We constructed a smartphone-integrated optosensor with inexpensive, reversible, environmental friendly, and rapid adsorption to detect Cu(II) and L-cysteine (L-Cys). The key part of this study was to prepare a red-to-blue colorimetric probe from herbaceous andrographis paniculata using one-pot polymerization at room temperature. When Cu(II) existed, the red fluorescence on the surface of the core-shell probe was quenched, while the blue fluorescence of the core did not respond, because the colorimetric probe interacted with the Cu(II) on the surface of red CDs. After L-Cys added, it interacted with the Cu(II) to strip it from the surface of red CDs, resulting in the recovery of fluorescence response. Under optimal conditions, the detection limits of this method for Cu(II) and L-Cys were 71 nM and 12 nM, respectively. Further, the red-to-blue colorimetric probe was integrated into smartphone with a software application to convert fluorescent color images into specific red (R), green (G), and blue (B) values. The spiked recovery of Cu(II) and L-Cys in lake water was verified the feasibility of the developed optosensors with a recovery of 98.2-101.6 % and 103.3-121.6 %. This method for detecting Cu(II) and L-Cys can not only recognize metal ions from actual samples, but also effectively protect CDs from quenching and restore fluorescence.


Assuntos
Cisteína , Pontos Quânticos , Carbono , Espectrometria de Fluorescência/métodos , Colorimetria , Biomassa , Smartphone , Cobre , Corantes Fluorescentes
5.
J Fluoresc ; 33(3): 1111-1123, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36580202

RESUMO

Amino- and sulfhydryl- functionalized biomass carbon dots (BCDs) were prepared by one-pot reverse microemulsion for specific recognition of ferric ions (Fe3+) and L-cysteine (L-Cys). Green grapefruit peel was used as the carbon source while aminosilane and mercaptosilane were used as N- and S-supplier. Following the adsorption of Fe3+ on the surfaces of BCDs-NH2 and BCDs-SH, the fluorescence responses was quenched step by step, while adding L-Cys to the BCDs-NH2/Fe3+ system restored the fluorescence. The BCDs-NH2 and BCDs-SH system exhibited extremely low limits of detection for Fe3+ of 3.2 and 3.0 nM, respectively, within a wide linear ranges of 0.006-200 µM and 0.004-200 µM, respectively. The BCDs-NH2/Fe3+ systems were used as an optosensor for L-Cys in the concentration ranges of 0.08-30 and 30-1000 µM with a detection limit of 65 nM. Developed BCDs-NH2 and BCDs-SH were able to respond to Fe3+ in water samples with satisfactory recoveries of 100.1%-103.1% and 94.6%-108.5%, respectively, and the BCDs-NH2/Fe3+ system was also able to respond to BCDs-NH2/Fe3+ in actual lake water samples with recoveries from 87.3% to 98.8%. Meanwhile, The BCDs-NH2 exhibited good photoluminescence and stability, and the with a fluorescence quantum yield was as high as 25%. This work demonstrates the feasibility of using such materials to remove hazardous ions from water and employing the resulting complexes for optosensing in a sustainable manner.


Assuntos
Cisteína , Pontos Quânticos , Carbono , Biomassa , Água , Íons
6.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290639

RESUMO

Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.

7.
Molecules ; 27(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35807347

RESUMO

This study designed a "turn-off-on" fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent "turn-off" probes to detect Fe3+ with a limit of detection of 0.086 µM, a linear detection range of 0.1-160 µM, and recovery of 83.47-106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4-85 µM. Recovery of L-Cys in amino acid beverage was 87.08-122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe3+ and L-Cys.


Assuntos
Pontos Quânticos , Carbono/química , Cisteína/análise , Corantes Fluorescentes/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos
8.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357459

RESUMO

A short self-assembly peptide A6K (H2N-AAAAAAK-OH) with unmodified N- and C-terminus was designed, and the charge distribution model of this short peptide at different pH was established by computer simulation. The pH of the solution was adjusted according to the model and the corresponding self-assembled structure was observed using a transmission electron microscope (TEM). As the pH changes, the peptide will assemble into blocks or nanoribbons, which indicates that the A6K peptide is a pH-responsive peptide. Circular dichroism (CD) and molecular dynamics (MD) simulation showed that the block structure was formed by random coils, while the increase in ß-turn content contributes to the formation of intact nanoribbons. A reasonable explanation of the self-assembling structure was made according to the electrostatic distribution model and the effect of electrostatic interaction on self-assembly was investigated. This study laid the foundation for further design of nanomaterials based on pH-responsive peptides.


Assuntos
Oligopeptídeos/química , Dicroísmo Circular , Simulação por Computador , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Peptídeos/química , Eletricidade Estática
9.
J Food Biochem ; 44(6): e13227, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282084

RESUMO

The main aim of this work was to screen, isolate, and identify a probiotic selenium (Se)-resistant strain of Bacillus subtilis, using the 16S rDNA sequencing approach and subsequently optimize conditions. Initially, conditions were enhanced in two univariate optimization environments: shakings flask and a bioreactor. After solving optimization for selected variables, conditions were further optimized using orthogonal array testing. The results were further evaluated by the analysis of variance, in support of Se enrichment. In a bioreactor, based on R and F values, the order of effect of selected conditions on Se enrichment was stirring speed > initial pH > temperature > Se addition time. The stirring speed of the bioreactor was most significant, due to the suspension of reduced Se, as it formed. After absolute optimization, strain BSN313 was able to enrich Se up to 2,123 µg/g of dry weight, which is 7.58 times greater than the baseline Se-resistance. PRACTICAL APPLICATIONS: Systematic studies of selenium enrichment conditions will facilitate the successful development of an organic selenium source and the safe use of Bacillus subtilis strain (BSN313) as a food supplement. Selenium-enriched probiotic bacteria are reported to provide many health benefits to the host, due to antipathogenic, antioxidative, anticarcinogenic, antimutagenic, and anti-inflammatory activities.


Assuntos
Probióticos , Selênio , Antioxidantes , Bacillus subtilis , Suplementos Nutricionais
10.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817293

RESUMO

The present study describes the production of biosurfactant from isolate B. licheniformis Ali5. Seven different, previously-reported minimal media were screened for biosurfactant production, and two selected media were further optimized for carbon source. Further, various fermentation conditions such as (pH 2-12, temperature 20-50 °C, agitation speed 100-300 rpm, NaCl (0-30 g·L-1) were investigated. The partially purified biosurfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) and found a lipopeptide mixture, similar to lichenysin-A. Biosurfactant reduced surface tension from 72.0 to 26.21 ± 0.3 and interfacial tension by 0.26 ± 0.1 mN.m-1 respectively, biosurfactant yield under optimized conditions was 1 g·L-1, with critical micelle concentration (CMC) of 21 mg·L-1 with high emulsification activity of (E24) 66.4 ± 1.4% against crude oil. Biosurfactant was found to be stable over extreme conditions. It also altered the wettability of hydrophobic surface by changing the contact angle from 49.76° to 16.97°. Biosurfactant efficiently removed (70-79%) motor oil from sand, with an efficiency of more than 2 fold as compared without biosurfactant (36-38%). It gave 32% additional oil recovery over residual oil saturation upon application to a sand-packed column. These results are indicative of potential application of biosurfactant in wettability alteration and ex-situ microbial enhanced oil recovery.


Assuntos
Bacillus licheniformis/química , Poluição Ambiental/análise , Petróleo/análise , Areia/química , Tensoativos/química , Bacillus licheniformis/crescimento & desenvolvimento , Carbono/análise , Emulsões/química , Hidrocarbonetos/isolamento & purificação , Concentração de Íons de Hidrogênio , Micelas , Filogenia , Salinidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tensão Superficial , Temperatura , Molhabilidade
11.
J Agric Food Chem ; 66(34): 9138-9146, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30074396

RESUMO

The present study investigated a novel lysozyme ApLyz from the Chinese oak silkmoth, Antheraea pernyi, for its active expression with N- or C-terminus fused to the yeast cell surface, and the antimicrobial activities of the corresponding expressed lysozymes were evaluated. The bactericidal activity of C-terminal fusion of ApLyz surpassed that of the N-terminal fusion, which revealed the implication of an N-terminal stretch of ApLyz in the bactericidal function based on the structural mobility of this region. Two N-terminal peptides of ApLyz (residues 1-15 and 1-32), which primarily consist of amphiphilic α-helices, exerted similar bactericidal efficacy and had a strong preference for the Gram-negative strains. Further investigation revealed that the N-terminal peptides are membrane-targeting peptides causing cell permeabilization and also possess nonmembrane disturbing bactericidal mechanism. Overall, in addition to the key findings of novel bactericidal peptides from silkmoth lysozyme, this work laid the foundation for future improvement of ApLyz by protein engineering.


Assuntos
Antibacterianos/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mariposas/enzimologia , Muramidase/química , Muramidase/genética , Peptídeos/química , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Mariposas/genética , Mariposas/microbiologia , Muramidase/metabolismo , Muramidase/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Domínios Proteicos , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA