Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biotechnol Biofuels Bioprod ; 17(1): 65, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741169

RESUMO

BACKGROUND: Ergothioneine (EGT) is a distinctive sulfur-containing histidine derivative, which has been recognized as a high-value antioxidant and cytoprotectant, and has a wide range of applications in food, medical, and cosmetic fields. Currently, microbial fermentation is a promising method to produce EGT as its advantages of green environmental protection, mild fermentation condition, and low production cost. However, due to the low-efficiency biosynthetic process in numerous cell factories, it is still a challenge to realize the industrial biopreparation of EGT. The non-conventional yeast Rhodotorula toruloides is considered as a potential candidate for EGT production, thanks to its safety for animals and natural ability to synthesize EGT. Nevertheless, its synthesis efficiency of EGT deserves further improvement. RESULTS: In this study, out of five target wild-type R. toruloides strains, R. toruloides 2.1389 (RT1389) was found to accumulate the highest EGT production, which could reach 79.0 mg/L at the shake flask level on the 7th day. To achieve iterative genome editing in strain RT1389, CRISPR-assisted Cre recombination (CACR) method was established. Based on it, an EGT-overproducing strain RT1389-2 was constructed by integrating an additional copy of EGT biosynthetic core genes RtEGT1 and RtEGT2 into the genome, the EGT titer of which was 1.5-fold increase over RT1389. As the supply of S-adenosylmethionine was identified as a key factor determining EGT production in strain RT1389, subsequently, a series of gene modifications including S-adenosylmethionine rebalancing were integrated into the strain RT1389-2, and the resulting mutants were rapidly screened according to their EGT production titers with a high-throughput screening method based on ergothionase. As a result, an engineered strain named as RT1389-3 was selected with a production titer of 267.4 mg/L EGT after 168 h in a 50 mL modified fermentation medium. CONCLUSIONS: This study characterized the EGT production capacity of these engineered strains, and demonstrated that CACR and high-throughput screening method allowed rapid engineering of R. toruloides mutants with improved EGT production. Furthermore, this study provided an engineered RT1389-3 strain with remarkable EGT production performance, which had potential industrial application prospects.

2.
J Basic Microbiol ; 64(4): e2300705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253966

RESUMO

Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.


Assuntos
Ergotioneína , Mycobacteriaceae , Animais , Ergotioneína/genética , Ergotioneína/metabolismo , Antioxidantes/metabolismo
3.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267547

RESUMO

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Sepse , Animais , Sepse/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Ratos , Administração Intravenosa
4.
J Transl Med ; 21(1): 603, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679727

RESUMO

BACKGROUND: The early differential diagnosis between bacterial meningitis (BM) and tuberculous meningitis (TBM) or cryptococcal meningitis (CM) remains a significant clinical challenge. Neutrophil Gelatinase-Associated Lipocalin (NGAL) has been reported as a novel inflammatory biomarker in the early stages of infection. This study aimed to investigate whether cerebrospinal fluid (CSF) NGAL can serve as a potential biomarker for distinguishing between BM and TBM or CM. METHODS: We prospectively enrolled the patients with suspected CNS infections at admission and divided them into three case groups: BM (n = 67), TBM (n = 55), CM (n = 51), and an age- and sex-matched hospitalized control (HC, n = 58). Detected the CSF NGAL and assessed its diagnostic accuracy in distinguishing between BM and TBM or CM. Additionally, longitudinally measured the CSF NGAL levels in patients with BM to evaluate its potential as a monitoring tool for antibacterial treatment. RESULTS: The concentration of CSF NGAL in BM was significantly higher than in TBM, CM, and HC (all P < 0.05), while the serum NGAL did not show significant differences among the three case groups. The ROC analysis demonstrated that CSF NGAL presented a good diagnostic performance with an AUC of 0.834 (0.770-0.886) and at the optimal cutoff value of 74.27 ng/mL with 70.15% sensitivity and 77.36% specificity for discriminating BM with TBM and CM. Additionally, the CSF NGAL in the convalescent period of BM was significantly lower than in the acute period (P < 0.05). CONCLUSIONS: CSF NGAL may serve as a potential biomarker for distinguishing between acute BM and TBM or CM. Additionally, it holds clinical significance in monitoring the effectiveness of antibiotic therapy for BM.


Assuntos
Meningites Bacterianas , Meningite Criptocócica , Tuberculose Meníngea , Humanos , Antibacterianos , Lipocalina-2 , Meningites Bacterianas/diagnóstico , Meningite Criptocócica/diagnóstico , Estudos Prospectivos , Tuberculose Meníngea/diagnóstico
5.
Talanta ; 263: 124761, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267883

RESUMO

Endocrine-disrupting compounds (EDCs) are widely distributed in the environment. Here, we present a CRISPR/Cas12a (CAS) biosensor based on DNA aptamers for point-of-care detection of EDCs. Two typical EDCs, 17ß-estradiol (E2) and bisphenol A (BPA), were selected to be detected by the CAS biosensors via the plug-and-play of their DNA aptamers. The results indicated that the performance of the CAS biosensors can be well regulated by controlling the trans-cleavage activity of Cas12a on a single-stranded DNA reporter and optimizing the sequence and ratio of DNA aptamer and activator DNA. Ultimately, two reliable and specific biosensors were developed, with the linear range and limit of detection of 0.2-25 nM and 0.08 nM for E2 and of 0.1-250 nM and 0.06 nM for BPA, respectively. Compared to the existing detection methods, the CAS biosensors showed higher reliability and sensitivity with simple operation, short detection time, and no costly equipment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/genética , Sistemas CRISPR-Cas , Reprodutibilidade dos Testes , Estradiol , Técnicas Biossensoriais/métodos
6.
Physiol Plant ; 175(3): e13920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097722

RESUMO

Engineering anthocyanin biosynthesis in herbs could provide health-promoting foods for improving human health. Rehmannia glutinosa is a popular medicinal herb in Asia, and was a health food for the emperors of the Han Dynasty (59 B.C.). In this study, we revealed the differences in anthocyanin composition and content between three Rehmannia species. On the 250, 235 and 206 identified MYBs in the respective species, six could regulate anthocyanin biosynthesis by activating the ANTHOCYANIDIN SYNTHASE (ANS) gene expression. Permanent overexpression of the Rehmannia MYB genes in tobacco strongly promoted anthocyanin content and expression levels of NtANS and other genes. A red appearance of leaves and tuberous/roots was observed, and the total anthocyanin content and the cyanidin-3-O-glucoside content were significantly higher in the lines overexpressing RgMYB41, RgMYB42, and RgMYB43 from R. glutinosa, as well as RcMYB1 and RcMYB3 in R. chingii and RhMYB1 from R. henryi plants. Knocking out of RcMYB3 by CRISPR/Cas9 gene editing resulted in the discoloration of the R. chingii corolla lobes, and decreased the content of anthocyanin. R. glutinosa overexpressing RcMYB3 displayed a distinct purple color in the whole plants, and the antioxidant activity of the transgenic plants was significantly enhanced compared to WT. These results indicate that Rehmannia MYBs can be used to engineer anthocyanin biosynthesis in herbs to improve their additional value, such as increased antioxidant contents.


Assuntos
Rehmannia , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rehmannia/genética , Rehmannia/metabolismo , Antocianinas/metabolismo , Genes myb , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
7.
Front Immunol ; 14: 1058327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761768

RESUMO

Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of pigs, causing porcine epidemic diarrhea (PED). In particular, the virus causes severe diarrhea, dehydration, and death in neonatal piglets. Maternal immunity effectively protects neonatal piglets from PEDV infection; however, maternal antibodies can only prevent PEDV attachment and entry into target cells, but have no effects on intracellular viruses. Intracellular antibodies targeting virus-encoded proteins are effective in preventing viral infection. We previously identified four single chain variable fragments (scFvs), ZW1-16, ZW3-21, ZW1-41, and ZW4-16, which specifically targeted the PEDV N protein and significantly inhibited PEDV replication and up-regulated interferon-λ1 (IFN-λ1) expression in host cells. In our current study, the four scFvs were subcloned into replication-defective adenovirus vectors to generate recombinant adenoviruses rAdV-ZW1-16, rAdV-ZW3-21, rAdV-ZW1-41, and rAdV-ZW4-16. ScFvs were successfully expressed in Human Embryonic Kidney 293 (HEK293) cells and intestinal porcine epithelial cell line J2 (IPEC-J2) and were biosafe for piglets as indicated by body temperature and weight, scFv excretion in feces, IFN-γ and interleukin-4 (IL-4) expression in jejunum, and pathological changes in porcine tissue after oral administration. Western blotting, immunofluorescence, and immunohistochemical analyses showed that scFvs were expressed in porcine jejunum. The prophylactic effects of rAdV-ZW, a cocktail of the four rAdV-scFvs, on piglet diarrhea caused by PEDV was investigated. Clinical symptoms in piglets orally challenged with PEDV, following a two-time treatment with rAdV-ZW, were significantly reduced when compared with PEDV-infected piglets treated with phosphate buffered saline (PBS) or rAdV-wild-type. Also, no death and jejunal lesions were observed. ScFv co-localization with the PEDV N protein in vivo was also observed. Next, the expression of pro-inflammatory serum cytokines such as tumor necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, and IFN-λ was assessed by enzyme-linked immunosorbent assay (ELISA), which showed that scFvs significantly suppressed PEDV-induced pro-inflammatory cytokine expression and restored PEDV-inhibited IFN-λ expression. Therefore, our study supported a promising role for intracellular scFvs targeting the PEDV N protein to prevent and treat diarrhea in PEDV-infected piglets.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Anticorpos de Cadeia Única , Viroses , Animais , Humanos , Suínos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Proteínas do Nucleocapsídeo , Células HEK293 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/tratamento farmacológico , Citocinas/farmacologia , Proteínas Virais/farmacologia , Diarreia/prevenção & controle , Diarreia/veterinária
8.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432968

RESUMO

Radio-fluorogenic hydrogel dosimeters are urgently needed in radiotherapy for 3D dose verification. However, few hydrogel sensors have been reported at low absorbed doses under 2 Gy which meets the requirements of clinical practice. Here, we report a new type of gold-nanoparticle-enhanced radio-fluorogenic agarose hydrogel with coumarin as the dose-responsive material. An optimal composition of 3 wt% of agarose, 0.1 mM of gold nanoparticles, and 0.5 mM coumarin was selected. The addition of gold nanoparticles enhanced the hydroxyl radicals generated from the radiolysis of water, which can react with coumarin and generate fluorescent 7-hydroxy-coumarin and, eventually, achieve low-dose verification of 0-2.4 Gy with a high linear correlation coefficient. These findings provide an effective method for 3D dose verification, and will inspire the development of other radio-fluorogenic sensing hydrogels as well.

9.
Biotechnol Lett ; 44(12): 1401-1414, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269495

RESUMO

Human epidermal growth factor (hEGF) has multiple biological functions, such as promoting cell proliferation, differentiation, and migration. In addition, it is a very expensive polypeptide with attractive market prospects. However, the production of hEGF needs for high cost to manufacture polypeptide demands reinvestigations of process conditions so as to enhance economic benefits. Improving the expression of soluble hEGF is the fundamental method to reduce the cost. In this study, a non-extracellular engineered strain of expressed hEGF was constructed, using plasmid pET-22b(+) in Escherichia coli. Preliminary fermentation and high cell density cultivation were carried out in shake flasks and in a 5 L bioreactor, respectively. A high yield of 98 ± 10 mg/L of soluble hEGF and a dry cell weight (DCW) of 6.98 ± 0.3 g/L were achieved in shake flasks. Then, fermentation conditions were optimized for large-scale production, while taking into consideration the expensive equipment required for cooling and conforming to industrial standards. A yield of 285 ± 10 mg/L of soluble hEGF, a final cell density of 57.4 ± 2 g/L DCW (OD600 141.1 ± 4.9), and hEGF productivity of 14.3 mg/L/h were obtained using a bioreactor at 32 °C for 20 h. The production method developed in this study for the biosynthesis of soluble hEGF is efficient and inexpensive.


Assuntos
Fator de Crescimento Epidérmico , Escherichia coli , Humanos , Escherichia coli/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Plasmídeos , Reatores Biológicos , Fermentação
10.
Synth Syst Biotechnol ; 7(3): 1002-1011, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35782483

RESUMO

Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.

11.
Front Pharmacol ; 13: 911982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620286

RESUMO

Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350-450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.

12.
ACS Synth Biol ; 11(5): 1958-1970, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35500195

RESUMO

Genome mutagenesis drives the evolution of organisms. Here, we developed a CRISPR-Cas assisted random mutation (CARM) technique for whole-genome mutagenesis. The method leverages an entirely random gRNA library and SpCas9-NG to randomly damage genomes in a controllable shotgunlike manner that then triggers diverse and abundant mutations via low-fidelity repair. As a proof of principle, CARM was applied to evolve the capacity of Saccharomyces cerevisiae BY4741 to produce ß-carotene. After seven rounds of iterative evolution over two months, a ß-carotene hyperproducing strain, C7-143, was isolated with a 10.5-fold increase in ß-carotene production and 857 diverse genomic mutations that comprised indels, duplications, inversions, and chromosomal rearrangements. Transcriptomic analysis revealed that the expression of 2541 genes of strain C7-143 was significantly altered, suggesting that the metabolic landscape of the strain was deeply reconstructed. In addition, CARM was applied to evolve industrially relevant S. cerevisiae CEN.PK2-1C for S-adenosyl-L-methionine production, which was increased 2.28 times after just one round. Thus, CARM can contribute to increasing genetic diversity to identify new phenotypes that could further be investigated by reverse engineering.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Edição de Genes , Engenharia Genética , Mutagênese , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/metabolismo
13.
Biosens Bioelectron ; 203: 113897, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134684

RESUMO

Identifying, isolating, and obtaining naturally occurring transcription factors (TFs) is crucial for developing transcription-dependent biosensors. However, identifying and optimizing TFs for given molecules requires extensive time and effort. Accordingly, here, we report a strategy for the de novo design of a nonnatural TF, DLA, on the basis of a subtle conformational change of the ligand-binding domain (LBD) after the binding of a target molecule with its receptor. For the de novo design of DLA, we applied molecular dynamics to simulate different conformational states of DLA in order to understand the complete activity of DLA, which involves shortening of the distance between the DNA-binding domain (DBD) and the activation domain (AD) after progesterone binds to its LBD within DLA. The simulated results suggested that prokaryotic LexA, a truncated LBD from the progesterone receptor, and prokaryotic B42 together constitute DLA with a TF function. As a proof of concept, DLA was used as a transcription activator controlling the transcription of green fluorescent protein to construct an S. cerevisiae biosensor for progesterone detection. The progesterone-specific biosensor was successfully constructed with a sensitivity index EC50 of 27 µg/L, working range (0.16-60 µg/L), and time-to-detection (2.5 h). Ultimately, a low-cost, user-friendly kit was developed for the rapid detection of progesterone in the clinic. Theoretically, this work can also be used to develop a variety of other biosensors by employing the same strategy.


Assuntos
Técnicas Biossensoriais , Fatores de Transcrição , Técnicas Biossensoriais/métodos , Regulação da Expressão Gênica , Progesterona , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
14.
Bioresour Bioprocess ; 9(1): 70, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38647553

RESUMO

Indirubin is a bisindole compound for the treatment of chronic myelocytic leukemia. Here, we presented a structure-guided method to improve the activity of a flavin-containing monooxygenase (bFMO) for the efficient production of indirubin in Escherichia coli. A flexible loop interlocked with the active pocket through a helix and the substrate tunnel rather than the active pocket in bFMO were identified to be two reconfigurable structures to improve its activity, resulting in K223R and N291T mutants with enhanced catalytic activity by 2.5- and 2.0-fold, respectively. A combined modification at the two regions (K223R/D317S) achieved a 6.6-fold improvement in catalytic efficiency (kcat/Km) due to enhancing π-π stacking interactions stabilization. Finally, an engineered E. coli strain was constructed by metabolic engineering, which could produce 860.7 mg/L (18 mg/L/h) indirubin, the highest yield ever reported. This work provides new insight into the redesign of FMOs to boost their activities and an efficient approach to produce indirubin.

15.
Vaccines (Basel) ; 9(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34835231

RESUMO

Staphylococcus aureus is a causative agent of bovine mastitis, capable of causing significant economic losses to the dairy industry worldwide. This study focuses on obtaining single-chain fragment variables (scFvs) against the virulence factors of S. aureus and evaluates the protective effect of scFvs on bovine mammary epithelial (MAC-T) cells and mice mammary gland tissues infected by S. aureus. After five rounds of bio-panning, four scFvs targeting four virulence factors of S. aureus were obtained. The complementarity-determining regions (CDRs) of these scFvs exhibited significant diversities, especially CDR3 of the VH domain. In vitro, each of scFvs was capable of inhibiting S. aureus growth and reducing the damage of MAC-T cells infected by S. aureus. Preincubation of MAC-T cells with scFvs could significantly attenuate the effect of apoptosis and necrosis compared with the negative control group. In vivo, the qPCR and ELISA results demonstrated that scFvs reduced the transcription and expression of Tumor Necrosis Factor alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6, IL-8, and IL-18. Histopathology and myeloperoxidase (MPO) results showed that scFvs ameliorated the histopathological damages and reduced the inflammatory cells infiltration. The overall results demonstrated the positive anti-inflammatory effect of scFvs, revealing the potential role of scFvs in the prevention and treatment of S. aureus infections.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34228610

RESUMO

A novel Gram-stain-negative, short rod-shaped, facultatively anaerobic, non-motile, non-gliding, oxidase-positive and catalase-negative bacterium, designated ML27T, was isolated from oyster homogenate in Rushan, Weihai, PR China. Growth occurred at 20-33 °C (optimum, 30 °C), at pH 7.0-9.0 (optimum, pH 7.5-8.0) and in the presence of 1-6 % (w/v) NaCl (optimum, 3 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ML27T was 90.7 % similar to Suttonella ornithocola DSM 18249T, 89.2 % to Suttonella indologenes JCM 1478T and 88.2 % to Cardiobacterium hominis DSM 8339T; similarities to other species were less than 90 %. The average amino acid identity between strain ML27T, S. indologenes JCM 1478T, S. ornithocola DSM 18249T, C. hominis DSM 8339T and Dichelobacter nodosus ATCC 25549T were 46.23, 45.86, 45.54 and 45.84 %, respectively. Phylogenomic tree and phylogenetic analyses based on 16S rRNA gene sequences showed that the isolate formed a novel family-level clade in the order Cardiobacteriales. The sole respiratory quinone was ubiquinone-7 (Q-7). The dominant cellular fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 46.3 %), C16 : 0 (17.8 %) and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c; 13.5 %). The DNA G+C content of strain ML27T was 45.6 mol%. Polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and one unidentified lipid. Comparative analyses of 16S rRNA gene sequences, genomic distinctiveness and characterization indicated that strain ML27T represents a novel species of a new genus within a novel family of the order Cardiobacteriales, for which the name Ostreibacterium oceani gen. nov., sp. nov. is proposed. The type strain of Ostreibacterium oceani is ML27T (=MCCC 1H00372T=KCTC 72155T). In addition, a novel family, Ostreibacteriaceae fam. nov., is proposed to accommodate the genus Ostreibacterium.


Assuntos
Gammaproteobacteria/classificação , Ostreidae/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
17.
J Basic Microbiol ; 61(6): 506-523, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955034

RESUMO

Prodigiosin is a natural red pigment derived primarily from secondary metabolites of microorganisms, especially Serratia marcescens. It can also be chemically synthesized. Prodigiosin has been proven to have antitumor, antibacterial, antimalaria, anti-insect, antialgae, and immunosuppressive activities, and is gaining increasing important in the global market because of its great potential application value in clinical medicine development, environmental treatment, preparation of food additives, and so on. Due to the low efficiency of prodigiosin chemical synthesis, high-level prodigiosin of production by microorganisms are necessary for prodigiosin applications. In this paper, the production of prodigiosin by microorganism in recent decades is reviewed. The methods and strategies for increasing the yield of prodigiosin are discussed from the aspects of medium composition, additives, factors affecting production conditions, strain modification, and fermentation methods.


Assuntos
Prodigiosina/biossíntese , Vias Biossintéticas , Meios de Cultura , Fermentação , Serratia marcescens/genética , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/metabolismo
18.
J Biotechnol ; 323: 341-346, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976867

RESUMO

The conversion of low value-added phytosterols into 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) by mycobacteria is an important step in the steroid pharmaceutical industry. However, the highly dense cell envelope with extremely low permeability largely affects the overall transformation efficiency. Here, we preliminarily located the key gene embC required for the synthesis of lipoarabinomannan from lipomannan in Mycobacterium neoaurum. The genetic manipulation of embC indicated that it might be the only functional enzyme catalyzing the above synthesis process. The deficiency of lipoarabinomannan led to a significantly increased cell permeability, which in turn caused the enhanced uptake capacity of cells. The sterol substrate conversion efficiency of mycobacterial cells was increased by about 52.4 % after 72-h conversion. Ultimately, the absence of embC increased the productivity from 0.0927 g/L/h to 0.1031 g/L/h, as confirmed by a resting cell system. This study verified the feasibility of improving the efficiency of the microbial conversion system through the cell envelope engineering strategy.


Assuntos
Androstenodiona/metabolismo , Biotransformação , Membrana Celular/metabolismo , Parede Celular/metabolismo , Lipopolissacarídeos/biossíntese , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo , Fitosteróis/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Deleção de Genes , Genes Bacterianos/genética , Lipopolissacarídeos/genética , Engenharia Metabólica , Permeabilidade , Esteróis/metabolismo
19.
Clin Breast Cancer ; 20(1): e27-e35, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31439436

RESUMO

BACKGROUND: Evidence-based timeliness benchmarks have been established to assess quality of breast cancer care, as delays in treatment are associated with poor clinical outcomes. However, few studies have evaluated how current breast cancer care meets these benchmarks and what factors may delay the timely initiation of treatment. PATIENTS AND METHODS: Demographic and disease characteristics of 377 newly diagnosed patients with breast cancer who initiated treatment at Tufts Medical Center (2009-2015) were extracted from electronic medical records. Time from diagnosis to initial surgery and time from diagnosis to initiation of hormone therapy were estimated with Kaplan-Meier curves. Multivariable regression analysis was used to identify factors associated with treatment delays. Thematic analysis was performed to categorize reasons for delay. RESULTS: Of 319 patients who had surgery recommended as the first treatment, 248 (78%) met the 45-day benchmark (median, 28 days; 25th-75th %, 19-43). After adjusting for potential confounders, multivariable regression analysis revealed that negative hormone receptor status (odds ratio, 3.48; 95% confidence interval, 1.44-8.43) and mastectomy (odds ratio, 4.07; 95% confidence interval, 2.10-8.06) were significantly associated with delays in surgery. Delays were mostly owing to clinical complexity or logistical/financial reasons. Of 241 patients eligible for hormone therapy initiation, 232 (96%) met the 1-year benchmark (median, 147 days; 25th-75th %, 79-217). CONCLUSION: Most patients met timeliness guidelines for surgery and initiation of hormone therapy, although risk factors for delay were identified. Knowledge of reasons for breast cancer treatment delay, including clinical complexity and logistical/financial issues, may allow targeting interventions for patients at greatest risk of care delays.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/terapia , Mastectomia/estatística & dados numéricos , Tempo para o Tratamento/estatística & dados numéricos , Idoso , Biópsia/estatística & dados numéricos , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/economia , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/economia , Quimioterapia Adjuvante/estatística & dados numéricos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Humanos , Mastectomia/economia , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Radioterapia Adjuvante/economia , Radioterapia Adjuvante/estatística & dados numéricos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos , Tempo para o Tratamento/economia , Tempo para o Tratamento/normas
20.
Int J Syst Evol Microbiol ; 70(1): 321-326, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31639076

RESUMO

A Gram-stain-negative, rod-shaped and facultatively anaerobic strain, designated CG51T, was isolated from marine sediment collected from a coastal area in Weihai, PR China. Strain CG51T grew at 4-37 °C (optimum, 28-30 °C), with 1.0-6.0 % (w/v) NaCl (2.0-3.0 %) and at pH 6.0-8.5 (pH 7.0-7.5). The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Major polar lipids included an unidentified lipid and a phospholipid. The respiratory quinone was MK-7 and the genomic DNA G+C content was 35.9 mol%. The results of phylogenetic analysis based on 16S rRNA gene sequences placed strain CG51T in the genus Labilibacter with the close relatives being Labilibacter marinus Y11T and Labilibacter aurantiacus HQYD1T, exhibiting 96.5 and 96.3 % 16S rRNA pairwise similarity, values which are clearly below the 98.7 % threshold value recommended for species demarcation. Based on the phylogenetic, physiological, chemotaxonomic and genetic data, strain CG51T represents a novel species within the genus Labilibacter, for which the name Labilibacter sediminis sp. nov. is proposed. The type strain is CG51T (=MCCC 1K03739T=JCM 33138T).


Assuntos
Bacteroidetes/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA