Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell Signal ; 120: 111234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795810

RESUMO

Tumor dormancy is the underpinning for cancer relapse and chemoresistance, leading to massive cancer-related death in colorectal cancer (CRC). However, our comprehension of the mechanisms dictating tumor dormancy and strategies for eliminating dormant tumor cells remains restricted. In this study, we identified that collagen XVII (COL17A1), a hemidesmosomal transmembrane protein, can promote the dormancy of CRC cells. The upregulation of COL17A1 was observed to prolong quiescence periods and diminish drug susceptibility of CRC cells. Mechanistically, COL17A1 acts as a scaffold, enhancing the crosstalk between mTORC2 and Akt, thereby instigating the mTORC2-mediated dormant signaling. Notably, the activation of mTORC2 is contingent upon the intracellular domain of COL17A1, regardless of its ectodomain shedding. Our findings underscore a pivotal role of the COL17A1-mTORC2 axis in CRC dormancy, suggesting that mTORC2-specific inhibitors may hold therapeutic prospects for the eradication of dormant tumor cells.


Assuntos
Colágeno Tipo XVII , Neoplasias Colorretais , Alvo Mecanístico do Complexo 2 de Rapamicina , Colágenos não Fibrilares , Transdução de Sinais , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Colágenos não Fibrilares/metabolismo , Colágenos não Fibrilares/genética , Linhagem Celular Tumoral , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Autoantígenos/metabolismo , Camundongos , Camundongos Nus , Proliferação de Células , Camundongos Endogâmicos BALB C
2.
Signal Transduct Target Ther ; 9(1): 80, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565536

RESUMO

RNA-binding proteins (RBPs)-RNA networks have contributed to cancer development. Circular RNAs (circRNAs) are considered as protein recruiters; nevertheless, the patterns of circRNA-protein interactions in colorectal cancer (CRC) are still lacking. Processing bodies (PBs) formed through liquid-liquid phase separation (LLPS) are membrane-less organelles (MLOs) consisting of RBPs and RNA. Previous evidence suggests a connection between PBs dynamics and cancer progression. Despite the increasingly acknowledged crucial role of RBPs and RNA in the accumulation and maintenance of MLOs, there remains a lack of specific research on the interactions between PBs-related RBPs and circRNAs in CRC. Herein, we identify that MEX-3 RNA binding family member A (MEX3A), frequently upregulated in CRC tissues, predicts poorer patient survival. Elevated MEX3A accelerates malignance and inhibits autophagy of CRC cells. Importantly, MEX3A undergoes intrinsically disordered regions (IDRs)-dependent LLPS in the cytoplasm. Specifically, circMPP6 acts as a scaffold to facilitate the interaction between MEX3A and PBs proteins. The MEX3A/circMPP6 complex modulates PBs dynamic and promotes UPF-mediated phosphodiesterase 5A (PDE5A) mRNA degradation, consequently leading to the aggressive properties of CRC cells. Clinically, CRC patients exhibiting high MEX3A expression and low PDE5A expression have the poorest overall survival. Our findings reveal a collaboration between MEX3A and circMPP6 in the regulation of mRNA decay through triggering the PBs aggregation, which provides prognostic markers and/or therapeutic targets for CRC.


Assuntos
Neoplasias Colorretais , RNA Circular , Humanos , Autofagia/genética , Neoplasias Colorretais/metabolismo , Família , Fosfoproteínas/metabolismo , Proteínas/metabolismo , RNA/genética , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Cell Rep ; 43(1): 113654, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175757

RESUMO

Deficiency of DNA repair pathways drives the development of colorectal cancer. However, the role of the base excision repair (BER) pathway in colorectal cancer initiation remains unclear. This study shows that Nei-like DNA glycosylase 1 (NEIL1) is highly expressed in colorectal cancer (CRC) tissues and associated with poorer clinical outcomes. Knocking out neil1 in mice markedly suppresses tumorigenesis and enhances infiltration of CD8+ T cells in intestinal tumors. Furthermore, NEIL1 directly forms a complex with SATB2/c-Myc to enhance the transcription of COL17A1 and subsequently promotes the production of immunosuppressive cytokines in CRC cells. A NEIL1 peptide suppresses intestinal tumorigenesis in ApcMin/+ mice, and targeting NEIL1 demonstrates a synergistic suppressive effect on tumor growth when combined with a nuclear factor κB (NF-κB) inhibitor. These results suggest that combined targeting of NEIL1 and NF-κB may represent a promising strategy for CRC therapy.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Animais , Camundongos , Carcinogênese , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , DNA Glicosilases/metabolismo , Reparo do DNA , NF-kappa B/metabolismo
4.
EMBO J ; 43(1): 61-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177310

RESUMO

Accumulation of DNA damage in the lung induces cellular senescence and promotes age-related diseases such as idiopathic pulmonary fibrosis (IPF). Hence, understanding the mechanistic regulation of DNA damage repair is important for anti-aging therapies and disease control. Here, we identified an m6A-independent role of the RNA-binding protein YTHDC1 in counteracting stress-induced pulmonary senescence and fibrosis. YTHDC1 is primarily expressed in pulmonary alveolar epithelial type 2 (AECII) cells and its AECII expression is significantly decreased in AECIIs during fibrosis. Exogenous overexpression of YTHDC1 alleviates pulmonary senescence and fibrosis independent of its m6A-binding ability, while YTHDC1 deletion enhances disease progression in mice. Mechanistically, YTHDC1 promotes the interaction between TopBP1 and MRE11, thereby activating ATR and facilitating DNA damage repair. These findings reveal a noncanonical function of YTHDC1 in delaying cellular senescence, and suggest that enhancing YTHDC1 expression in the lung could be an effective treatment strategy for pulmonary fibrosis.


Assuntos
Senescência Celular , Fibrose Pulmonar Idiopática , Proteínas do Tecido Nervoso , Fatores de Processamento de RNA , Animais , Camundongos , Envelhecimento/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262246

RESUMO

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Fosfatases de Especificidade Dupla , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Ferroptose/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Monoéster Fosfórico Hidrolases/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
6.
BMC Med Imaging ; 23(1): 210, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087207

RESUMO

BACKGROUND: Mutated KRAS may indicate an invasive nature and predict prognosis in locally advanced rectal cancer (LARC). We aimed to establish a radiomic model using pretreatment T2W MRIs to predict KRAS status and explore the association between the KRAS status or model predictions and lung metastasis. METHODS: In this retrospective multicentre study, LARC patients from two institutions between January 2012 and January 2019 were randomly divided into training and testing cohorts. Least absolute shrinkage and selection operator (LASSO) regression and the support vector machine (SVM) classifier were utilized to select significant radiomic features and establish a prediction model, which was validated by radiomic score distribution and decision curve analysis. The association between the model stratification and lung metastasis was investigated by Cox regression and Kaplan‒Meier survival analysis; the results were compared by the log-rank test. RESULTS: Overall, 103 patients were enrolled (73 and 30 in the training and testing cohorts, respectively). The median follow-up was 38.1 months (interquartile range: 26.9, 49.4). The radiomic model had an area under the curve (AUC) of 0.983 in the training cohort and 0.814 in the testing cohort. Using a cut-off of 0.679 defined by the receiver operating characteristic (ROC) curve, patients with a high radiomic score (RS) had a higher risk for lung metastasis (HR 3.565, 95% CI 1.337, 9.505, p = 0.011), showing similar predictive performances for the mutant and wild-type KRAS groups (HR 3.225, 95% CI 1.249, 8.323, p = 0.016, IDI: 1.08%, p = 0.687; NRI 2.23%, p = 0.766). CONCLUSIONS: We established and validated a radiomic model for predicting KRAS status in LARC. Patients with high RS experienced more lung metastases. The model could noninvasively detect KRAS status and may help individualize clinical decision-making.


Assuntos
Neoplasias Pulmonares , Neoplasias Retais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/genética , Neoplasias Retais/terapia
7.
Clin Transl Radiat Oncol ; 38: 175-182, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36471751

RESUMO

Background and purpose: Predicting tumour response would be useful for selecting patients with locally advanced rectal cancer (LARC) for organ preservation strategies. We aimed to develop and validate a prediction model for T downstaging (ypT0-2) in LARC patients after neoadjuvant chemoradiotherapy and to identify those who may benefit from consolidation chemotherapy. Materials and methods: cT3-4 LARC patients at three tertiary medical centers from January 2012 to January 2019 were retrospectively included, while a prospective cohort was recruited from June 2021 to March 2022. Eight filter (principal component analysis, least absolute shrinkage and selection operator, partial least-squares discriminant analysis, random forest)-classifier (support vector machine, logistic regression) models were established to select radiomic features. A nomogram combining radiomics and significant clinical features was developed and validated by calibration curve and decision curve analysis. Interaction test was conducted to investigate the consolidation chemotherapy benefits. Results: A total of 634 patients were included (426 in training cohort, 174 in testing cohort and 34 in prospective cohort). A radiomic prediction model using partial least-squares discriminant analysis and a support vector machine showed the best performance (AUC: 0.832 [training]; 0.763 [testing]). A nomogram combining radiomics and clinical features showed significantly better prognostic performance (AUC: 0.842 [training]; 0.809 [testing]) than the radiomic model. The model was also tested in the prospective cohort with AUC 0.727. High-probability group (score > 81.82) may have potential benefits from ≥ 4 cycles consolidation chemotherapy (OR: 4.173, 95 % CI: 0.953-18.276, p = 0.058, pinteraction = 0.021). Conclusion: We identified and validated a model based on multicenter pre-treatment radiomics to predict ypT0-2 in cT3-4 LARC patients, which may facilitate individualised treatment decision-making for organ-preservation strategies and consolidation chemotherapy.

8.
Oncogene ; 41(39): 4433-4445, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35989368

RESUMO

Abnormal regulation of centrosome components can induce chromosome instability and tumorigenesis. Centrosomal protein 63 (CEP63) is a vital member for assembling centrosome. Yet, the involvement of CEP63 in cancer pathogenesis remains unclear. Here we identify CEP63 as an important mediator for RNA-binding proteins (RBPs) to facilitate regulation on their RNA targets in colorectal cancer (CRC). We demonstrate that CEP63 protein is upregulated in a large cohort of colorectal cancer tissues and predicts poor prognosis, and USP36 is identified for stabilizing CEP63 by enhancing its K48-dependent deubiquitination. CEP63 overexpression promotes the proliferation and tumor growth of CRC cells in vitro and in vivo. Furthermore, we find that CEP63 can promote cancer stem-like cell properties by enhancing YAP1 expression through binding with and inhibiting the K63-ubiquitylation degradation of RBP FXR1 in CRC cells. Importantly, we further verify that the KH domain of FXR1 is necessary for the interaction between CEP63 and FXR1. Moreover, microtube motor proteins can form a complex with CEP63 and FXR1 to mediate the regulation of FXR1 on RNA targets. Additionally, we also confirm that CEP63 can bind and regulate multiple RBPs. In conclusion, our findings unveil an unrecognized CEP63/RBPs/RNA axis that CEP63 may perform as an adapter facilitating the formation of RBPs complex to regulate RNA progression and discover the role of CEP63 involved in signal transduction and RNA regulation, providing potential therapeutic target for CRC patients.


Assuntos
Neoplasias Colorretais , Proteínas de Ligação a RNA , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Centrossomo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Sinalização YAP
9.
World J Clin Cases ; 10(11): 3414-3425, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35611190

RESUMO

BACKGROUND: Patients with recurrent or locally advanced head and neck squamous cell carcinoma (HNSCC) typically have limited treatment options and poor prognosis. AIM: To evaluate the efficacy and safety of two drugs with potent radio-sensitization properties including gemcitabine and nedaplatin as concurrent chemoradiotherapy regimens in treating HNSCC. METHODS: This single-arm prospective study enrolled patients with HNSCC to receive gemcitabine on days 1 and 8 and nedaplatin on days 1 to 3 for 21 days. Intensity-modulated radiation therapy with a conventional fraction was delivered 5 days per week. Objective response rate (ORR), disease control rate, and toxicity were observed as primary endpoints. Overall survival (OS) and progression free survival were recorded and analyzed as secondary endpoints. RESULTS: A total of 24 patients with HNSCC were enrolled. During the median 22.4-mo follow-up, both ORR and disease control rate were 100%. The one-year OS was 75%, and one-year progression-free survival (PFS) was 66.7% (median PFS was 15.1 mo). Recurrent HNSCC patients had a poorer prognosis than the treatment-naïve patients, and patients who achieved complete response had better survival than those in the PR group (all P < 0.05). The most common grade 1-4 (100%) or grade 3-4 toxicities (75%) were hematological, and the most common grade 3-4 non-hematological toxicity was mucositis in 17 (71%) patients. CONCLUSION: Gemcitabine plus nedaplatin with concurrent chemoradiotherapy is a therapeutic option for HNSCC with predictable tolerability. Considering the high adverse event rate, the optimized dose and schedule must be further explored.

11.
Mol Ther ; 30(8): 2828-2843, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524408

RESUMO

Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions, but the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-like factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis: nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and the proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance the stress tolerance of CRC cells and provides a potential therapeutic vulnerability.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição Kruppel-Like , Resposta a Proteínas não Dobradas , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Estresse do Retículo Endoplasmático/genética , Homeostase , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
12.
Mol Cancer ; 21(1): 93, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366894

RESUMO

BACKGROUND: Circular RNAs (circRNAs) regulate various biological activities and have been shown to play crucial roles in hepatocellular carcinoma (HCC) progression. However, only a few coding circRNAs have been identified in cancers, and their roles in HCC remain elusive. This study aimed to identify coding circRNAs and explore their function in HCC. METHODS: CircMAP3K4 was selected from the CIRCpedia database. We performed a series of experiments to determine the characteristics and coding capacity of circMAP3K4. We then used in vivo and in vitro assays to investigate the biological function and mechanism of circMAP3K4 and its protein product, circMAP3K4-455aa, in HCC. RESULTS: We found circMAP3K4 to be an upregulated circRNA with coding potential in HCC. IGF2BP1 recognized the circMAP3K4 N6-methyladenosine modification and promoted its translation into circMAP3K4-455aa. Functionally, circMAP3K4-455aa prevented cisplatin-induced apoptosis in HCC cells by interacting with AIF, thus protecting AIF from cleavage and decreasing its nuclear distribution. Moreover, circMAP3K4-455aa was degraded through the ubiquitin-proteasome E3 ligase MIB1 pathway. Clinically, a high level of circMAP3K4 is an independent prognostic factor for adverse overall survival and adverse disease-free survival of HCC patients. CONCLUSIONS: CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, circMAP3K4 encoded circMAP3K4-455aa, protected HCC cells from cisplatin exposure, and predicted worse prognosis of HCC patients. Targeting circMAP3K4-455aa may provide a new therapeutic strategy for HCC patients, especially for those with chemoresistance. CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, IGF2BP1 facilitates circMAP3K4 peptide translation, then the circMAP3K4 peptide inhibits AIF cleavage and nuclear distribution, preventing HCC cells from cell death under stress and promoting HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Apoptose , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Peptídeos
13.
Br J Cancer ; 127(2): 249-257, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35368044

RESUMO

BACKGROUND: To analyse the performance of multicentre pre-treatment MRI-based radiomics (MBR) signatures combined with clinical baseline characteristics and neoadjuvant treatment modalities to predict complete response to neoadjuvant (chemo)radiotherapy in locally advanced rectal cancer (LARC). METHODS: Baseline MRI and clinical characteristics with neoadjuvant treatment modalities at four centres were collected. Decision tree, support vector machine and five-fold cross-validation were applied for two non-imaging and three radiomics-based models' development and validation. RESULTS: We finally included 674 patients. Pre-treatment CEA, T stage, and histologic grade were selected to generate two non-imaging models: C model (clinical baseline characteristics alone) and CT model (clinical baseline characteristics combining neoadjuvant treatment modalities). The prediction performance of both non-imaging models were poor. The MBR signatures comprising 30 selected radiomics features, the MBR signatures combining clinical baseline characteristics (CMBR), and the CMBR incorporating neoadjuvant treatment modalities (CTMBR) all showed good discrimination with mean AUCs of 0.7835, 0.7871 and 0.7916 in validation sets, respectively. The three radiomics-based models had insignificant discrimination in performance. CONCLUSIONS: The performance of the radiomics-based models were superior to the non-imaging models. MBR signatures seemed to reflect LARC's true nature more accurately than clinical parameters and helped identify patients who can undergo organ preservation strategies.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Reto/patologia , Estudos Retrospectivos
14.
Cancer Sci ; 113(6): 2008-2021, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35348274

RESUMO

DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T-box TF family protein, was downregulated with hypermethylation of promoter in early-stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non-homologous DNA end joining (NHEJ)-mediated double-stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor-suppressive role of TBX20 by inhibiting NHEJ-mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early-stage CRC and a therapeutic target for combination therapy.


Assuntos
Neoplasias Colorretais , Quebras de DNA de Cadeia Dupla , Proteínas com Domínio T , Proteínas Mutadas de Ataxia Telangiectasia , Carcinogênese , Neoplasias Colorretais/genética , DNA , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Humanos , Proteínas com Domínio T/genética
15.
Oncogene ; 40(49): 6680-6691, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34645979

RESUMO

Colorectal carcinoma (CRC) is the second most deadly cancer worldwide. Therapies that take advantage of DNA repair defects have been explored in various tumors but not yet systematically in CRC. Here, we found that Diphosphoinositol Pentakisphosphate Kinase 2 (PPIP5K2), an inositol pyrophosphate kinase, was highly expressed in CRC and associated with a poor prognosis of CRC patients. In vitro and in vivo functional studies demonstrated that PPIP5K2 could promote the proliferation and migration ability of CRC cells independent of its inositol pyrophosphate kinase activity. Mechanically, S1006 dephosphorylation of PPIP5K2 could accelerate its dissociation with 14-3-3 in the cytoplasm, resulting in more nuclear distribution. Moreover, DNA damage treatments such as doxorubicin (DOX) or irradiation (IR) could induce nuclear translocation of PPIP5K2, which subsequently promoted homologous recombination (HR) repair by binding and recruiting RPA70 to the DNA damage site as a novel scaffold protein. Importantly, we verified that S1006 dephosphorylation of PPIP5K2 could significantly enhance the DNA repair ability of CRC cells through a series of DNA repair phenotype assays. In conclusion, PPIP5K2 is critical for enhancing the survival of CRC cells via facilitating DNA HR repair. Our findings revealed an unrecognized biological function and mechanism model of PPIP5K2 dependent on S1006 phosphorylation and provided a potential therapeutic target for CRC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncogene ; 40(40): 5925-5937, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363021

RESUMO

Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais/genética , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Lectinas/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Neoplasias Colorretais/patologia , Humanos , Camundongos , Neovascularização Patológica
17.
Mol Cancer ; 20(1): 103, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412652

RESUMO

BACKGROUND: Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. METHODS: We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC-MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. RESULTS: A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. CONCLUSIONS: circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Fosfoinositídeo Fosfolipase C/genética , RNA Circular , Proteínas Ribossômicas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Proteólise , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo , Ubiquitinação
18.
J Hepatocell Carcinoma ; 8: 493-505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095004

RESUMO

BACKGROUND AND AIM: To assess the profile of global histone modifications in small hepatocellular carcinoma (small HCC) and identify its prognostic value in predicting recurrence. METHODS: The expression profiles of global histone modifications, including H2AK5AC, H2BK20AC, H3K4me2, H3K9AC, H3K18AC, H4K12AC, and H4R3me2, were evaluated with immunohistochemistry in 335 HBV related small HCC patients. Two histone signature classifiers were then developed using least absolute shrinkage and selection operator Cox regression. A nomogram was built using the classifier and independent risk factors. The performances of the classifier and nomogram were assessed by receiver operating characteristic curves. RESULTS: Histone modifications were more pronounced in tumor tissues than in adjacent liver tissues. In tumor tissues, the risk score built based on the seven-histone signature exhibited satisfactory prediction efficiency, with an AUC = 0.71 (0.63-0.79) for 2-year survival in the training cohort. Patients with a high risk score had shorter recurrence-free survival than those with a low risk score (HR: 1.96, 95% CI: 1.24-3.08, p = 0.004; HR: 1.95, 95% CI: 1.12-3.42, p = 0.019; and HR: 1.97, 95% CI: 1.39-2.80, p < 0.001 for the training, validation and total cohorts, respectively). Furthermore, the statistical nomogram built using the histone classifier for early recurrence had a C-index = 0.68. In non-neoplastic liver tissues, the hepatic signature based on H3K4me2 and H4R3me2 was related to late recurrence (HR: 2.00, 95% CI: 1.15-3.48, p = 0.01). CONCLUSION: Global histone modifications in tumor and adjacent liver tissues are novel predictors of early and late recurrence, respectively, in HBV-related small HCC patients.

20.
Mol Oncol ; 15(12): 3447-3467, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33999512

RESUMO

Adipose-derived stem cells (ADSCs) play a vital role in colorectal cancer (CRC) progression, but the mechanism remains largely unknown. Herein, we found that ADSCs isolated from CRC patients produced more cysteine-rich 61 (Cyr61) than those from healthy donors, and the elevated serum Cyr61 levels were associated with advanced TNM stages. Moreover, serum Cyr61 displayed a better diagnostic value for CRC compared to carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19-9). Mechanistically, integrin αV ß5 was identified as the functional receptor by which Cyr61 promotes CRC cell metastasis in vitro and in vivo by activating the αV ß5 /FAK/NF-κB signaling pathway. In addition, Cyr61 promotes vasculogenic mimicry (VM) formation, thereby promoting tumor growth and metastasis through a αV ß5 /FAK/HIF-1α/STAT3/MMP2 signaling cascade. Histologically, xenografts and clinical samples of CRC both exhibited VM, which was correlated with HIF-1α and MMP2 activation. Notably, we demonstrated the synergistic effect of combined anti-VM therapy (integrin αV ß5 inhibitor) and anti-VEGF therapy (bevacizumab) in patient-derived xenograft models. Further investigation showed that CRC cell-derived exosomal STAT3 promoted Cyr61 transcription in ADSCs. These findings indicate that Cyr61 derived from ADSCs plays a critical role in promoting CRC progression via integrin αV ß5 and provides a novel antitumor strategy by targeting Cyr61/αV ß5 .


Assuntos
Neoplasias Colorretais , Cisteína , Biomarcadores Tumorais , Antígeno CA-19-9 , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA