Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut Pathog ; 16(1): 41, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097746

RESUMO

Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.

2.
J Biomater Sci Polym Ed ; 35(9): 1359-1378, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490948

RESUMO

Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Poliuretanos , Óleos de Silicone , Propriedades de Superfície , Poliuretanos/química , Óleos de Silicone/química , Carbonato de Cálcio/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Água/química , Temperatura , Staphylococcus aureus/efeitos dos fármacos , Teste de Materiais
3.
Int J Biol Macromol ; 264(Pt 2): 130687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462112

RESUMO

Silk fibroin derived from silkworm cocoons exhibits excellent mechanical properties, good biocompatibility, and low immunogenicity. Previous studies showed that silk fibroin had an inhibitory effect on cells, suppressing proliferation and inducing apoptosis. However, the source of the toxicity and the mechanism of apoptosis induction are still unclear. In this study, we hypothesized that the toxicity of silk fibroin might originate from the crystalline region of the heavy chain of silk fibroin. We then verified the hypothesis and the specific induction mechanism. A target peptide segment was obtained from α-chymotrypsin. The potentially toxic mixture of silk fibroin peptides (SFPs) was separated by ion exchange, and the toxicity was tested by an MTT assay. The results showed that SFPs obtained after 4 h of enzymatic hydrolysis had significant cytotoxicity, and SFPs with isoelectric points of 4.0-6.8 (SFPα II) had a significant inhibitory effect on cell growth. LC-MS/MS analysis showed that SFPα II contained a large number of glycine-rich and alanine-rich repetitive sequence polypeptides from the heavy-chain crystallization region. A series of experiments showed that SFPα II mediated cell death through the apoptotic pathway by decreasing the expression of Bcl-2 protein and increasing the expression of Bax protein. SFPα II mainly affected the p53 pathway and the AMPK signaling pathway in HepG2 cells. SFPα II may indirectly increase the expression of Cers2 by inhibiting the phosphorylation of EGFR, which activated apoptotic signaling in the cellular mitochondrial pathway and inhibited the Akt/NF-κB pathway by increasing the expression of PPP2R2A.


Assuntos
Bombyx , Fibroínas , Animais , Fibroínas/farmacologia , Fibroínas/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Bombyx/química , Apoptose , Seda/química
4.
Biomater Adv ; 153: 213559, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523824

RESUMO

Transcatheter arterial chemoembolization (TACE) is an effective method for treating hepatocellular carcinoma (HCC). In this study, chitosan (CS), sodium glycerophosphate (GP), and sodium alginate (SA) were used as the main raw materials to develop clinically non-degradable embolization microspheres (Ms). Chitosan/sodium alginate embolization Ms. were generated using an emulsification cross-linking method. The Ms. were then uniformly dispersed in CS/GP temperature-sensitive gels to produce Gel/Ms. composite embolic agents. The results showed that Gel/Ms. had good morphology and a neatly arranged three-dimensional structure, and the Ms. dispersed in the Gel as evidenced by SEM. Furthermore, Gel/Ms. has good blood compatibility, with a hemolysis rate of ≤5 %. The cytotoxicity experiments have also proven its excellent cell compatibility. The degradation rate of Gel/Ms. was 58.869 ± 1.754 % within 4 weeks, indicating that Gel/Ms. had good degradation performance matching its drug release purpose. The Gel/Ms. adheres better at the target site than Ms. alone and releases the drug steadily over a long period, and the maximum release rate of Gel/Ms. within 8 h was 38.33 ± 1.528 %, and within 168 h was 81.266 ± 1.193 %. Overall, Gel/Ms. demonstrate better slow drug release, reduced sudden drug release, prolonged drug action time at the target site, and reduced toxic side effects on the body compared to Gel alone.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Quitosana , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Quitosana/química , Quimioembolização Terapêutica/métodos , Microesferas , Géis , Artéria Hepática/patologia , Alginatos
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3101-3110, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37162543

RESUMO

Acute megakaryocytic leukemia (AMKL) is a rare neoplasm caused by abnormal megakaryoblasts. Megakaryoblasts keep dividing and avoid undergoing polyploidization to escape maturation. Small-molecule probes inducing polyploidization of megakaryocytic leukemia cells accelerate the differentiation of megakaryocytes. This study aims to determine that Rho kinase (ROCK) inhibition on megakaryoblasts enhances polyploidization and the inhibition of ROCK1 by fasudil benefits AMKL mice. The study investigated fasudil on the megakaryoblast cells in vitro and in vivo. With the differentiation and apoptosis induction, fasudil was used to treat 6133/MPLW515L mice, and the differentiation level was evaluated. Fasudil could reduce proliferation and promote the polyploidization of megakaryoblasts. Meanwhile, fasudil reduced the disease burden of 6133/MPLW515L AMKL mice at a dose that is safe for healthy mice. Combination therapy of ROCK1 inhibitor fasudil and reported clinical AURKA inhibitor MLN8237 achieved a better antileukemia effect in vivo, which alleviated hepatosplenomegaly and promoted the differentiation of megakaryoblast cells. ROCK1 inhibitor fasudil is a good proliferation inhibitor and polyploidization inducer of megakaryoblast cells and might be a novel rationale for clinical AMKL treatment.


Assuntos
Leucemia Megacarioblástica Aguda , Megacariócitos , Animais , Camundongos , Megacariócitos/fisiologia , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Células Progenitoras de Megacariócitos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Quinases Associadas a rho
6.
J Control Release ; 356: 554-566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36924895

RESUMO

Primary myelofibrosis (PMF) is a severe myeloproliferative neoplasm that is characterized by low-differentiation megakaryoblasts and progressive bone marrow fibrosis. Although an Aurora kinase A (AURKA) targeting small-molecule inhibitor MLN8237 has been approved in clinical trials for differentiation therapy of high-risk PMF patients, its off-target side effects lead to a partial remission and serious complications. Here, we report a dual-targeting therapy agent (rLDL-MLN) with great clinical translation potential for differentiation therapy of PMF disease. In particular, the reconstituted low-density lipoprotein (rLDL) nanocarrier and the loaded MLN8237 can actively target malignant hematopoietic stem/progenitor cells (HSPCs) via LDL receptors and intracellular AURKA, respectively. In contrast to free MLN8237, rLDL-MLN effectively prohibits the proliferation of PMF cell lines and abnormal HSPCs and significantly induces their differentiation, as well as prevents the formation of erythrocyte and megakaryocyte colonies from abnormal HSPCs. Surprisingly, even at a 1500-fold lower dosage (0.01 mg/kg) than that of free MLN8237, rLDL-MLN still exhibits a much more effective therapeutic effect, with the PMF mice almost clear of blast cells. More importantly, rLDL-MLN promotes hematological recovery without any toxic side effects at the effective dosage, holding great promise in the targeted differentiation therapy of PMF patients.


Assuntos
Aurora Quinase A , Mielofibrose Primária , Camundongos , Animais , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/patologia , Lipoproteínas LDL , Diferenciação Celular
7.
Hematol Oncol ; 41(3): 474-486, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36422297

RESUMO

Primary myelofibrosis (PMF) is characterized by immature megakaryocytic hyperplasia, splenomegaly, extramedullary hematopoiesis and bone marrow fibrosis. Our preclinical study had demonstrated that aurora kinase A (AURKA) inhibitor MLN8237 reduced the mutation burden of PMF by inducing differentiation of immature megakaryocytes. However, it only slightly alleviated splenomegaly, reduced tissue fibrosis, and normalized megakaryocytes in PMF patients of the preliminary clinical study. So enhancing therapeutic efficacy of PMF is needed. In this study, we found that AURKA directly interacted with heat shock protein 90 (HSP90) and HSP90 inhibitors promoted the ubiquitin-dependent AURKA degradation. We demonstrated that HSP90 inhibitors 17-allylamino-17-demethoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), normalized peripheral blood counts, improved splenomegaly, attenuated extramedullary hematopoiesis, decreased tissue fibrosis and reduced mutant burden in a MPLW515L mouse model of PMF. Importantly, both 17-AAG and 17-DMAG treatment at effective doses in vivo did not influence on hematopoiesis in healthy mice. Collectively, the study demonstrates that HSP90 inhibitors induce cell differentiation via the ubiquitin-dependent AURKA and also are safe and effective for the treatment of a MPLW515L mouse model of PMF, which may provide a new strategy for PMF therapy. Further, we demonstrate that combined therapy shows superior activity in acute megakaryocytic leukemia mouse model than single therapy.


Assuntos
Antineoplásicos , Mielofibrose Primária , Camundongos , Humanos , Animais , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Aurora Quinase A , Esplenomegalia/tratamento farmacológico , Ubiquitina/farmacologia , Ubiquitina/uso terapêutico , Diferenciação Celular/genética , Antineoplásicos/uso terapêutico , Fibrose , Proteínas de Choque Térmico/farmacologia , Proteínas de Choque Térmico/uso terapêutico
8.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501667

RESUMO

Density functional theory has been used to elucidate the mechanism of Pd copolymerization of cyclopropenone with ethylene. The results reveal that introducing ethylene and cyclopropenone to Pd catalyst is thermodynamically feasible and generates the α,ß-unsaturated ketone unit (UnitA). Cis-mode insertion and Path A1a are the most favorable reaction routes for ethylene and cyclopropenone, respectively. Moreover, cyclopropenone decomposition can generate CO in situ without a catalyst or with a Pd catalyst. The Pd-catalyzed decomposition of cyclopropenone exhibits a lower reaction barrier (22.7 kcal/mol) than its direct decomposition. Our study demonstrates that incorporating CO into the Pd catalyst can generate the isolated ketone unit (UnitB). CO is formed first; thereafter, UnitB is generated. Therefore, the total energy barrier of UnitB generation, accounting for the CO barrier, is 22.7 kcal/mol, which is slightly lower than that of UnitA generation (24.0 kcal/mol). Additionally, the possibility of copolymerizing ethylene, cyclopropenone, and allyl acetate (AAc) has been investigated. The free energy and global reactivity index analyses indicate that the cyclopropenone introduction reaction is more favorable than the AAc insertion, which is consistent with the experimental results. Investigating the copolymerization mechanism will help to develop of a functionalization strategy for polyethylene polymers.

9.
Med Oncol ; 39(12): 180, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071247

RESUMO

Breast cancer is the most common cancer among women worldwide. Researches show that Aurora kinase A (AURKA) is highly expressed in approximately 73% of breast cancer patients, which induces drug resistance in breast cancer patients and decreases the median survival time. AURKA regulates spindle assembly, centrosome maturation, and chromosome alignment. AURKA overexpression affects the occurrence and development of breast cancer. Besides AURKA overexpression, heat shock protein 90 (HSP90) maintains the survival and proliferation of tumor cells by stabilizing the structure of oncoproteins, including P53 mutants (mtP53). TP53 mutations accounted for approximately 13%, 40%, 80%, 33%, 71%, and 82% of luminal A, Luminal B, Luminal C, normal basal-like, HER2-amplified, and basal-like breast cancers, respectively. TP53 mutation can aggravate cell genome instability and enhance the invasion, migration, and resistance of cancer cell. This review describes the research status of AURKA and HSP90 in breast cancer, summarizes the structure, function, and the chaperone cycle of HSP90, elaborates the interrelation between HSP90, mtP53, P53, and AURKA, and proposes the combination of HSP90 inhibitor and AURKA inhibitor to treat breast cancer. Targeting AURKA and HSP90 to treat cancer with AURKA overexpression and TP53 mutations will help improve the specificity and efficiency of breast cancer treatment and solve the problem of drug resistance.


Assuntos
Antineoplásicos , Aurora Quinase A , Neoplasias da Mama , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Mutação , Proteína Supressora de Tumor p53/genética
10.
Clin Lymphoma Myeloma Leuk ; 22(5): e350-e362, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34903489

RESUMO

Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms and acute myeloid leukemia progression. Currently, allogeneic haematopoietic stem cell transplantation (AHSCT) therapy is the only curative option for MF patients. However, AHSCT is strictly limited due to the high rates of morbidity and mortality. Janus kinase 2 (JAK2) inhibitor Ruxolitinib is the first-line treatment for intermediate-II or high-risk MF patients with splenomegaly and constitutional symptoms, but most MF patients develop resistance or intolerance to Ruxolitinib. Therefore, MF treatment is a challenge for the medical community. This review summarizes 3 investigated directions for MF therapy: monotherapies of JAK inhibitors, monotherapies of non-JAK targeted agents, combination therapies of Ruxolitinib and other agents. We emphasize combination of Ruxolitinib and other agents is a promising strategy.


Assuntos
Anemia , Mielofibrose Primária , Hematopoese , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/tratamento farmacológico , Esplenomegalia
11.
Stem Cell Rev Rep ; 18(1): 77-93, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668120

RESUMO

The whole liver transplantation is the most effective treatment for end-stage fibrosis. However, the lack of available donors, immune rejection and total cost of surgery remain as the key challenges in advancing liver fibrosis therapeutics. Due to the multi-differentiation and low immunogenicity of stem cells, treatment of liver fibrosis with stem cells has been considered as a valuable new therapeutic modality. The pathological progression of liver fibrosis is closely related to the changes in the activities of intrahepatic cells. Damaged hepatocytes, activated Kupffer cells and other inflammatory cells lead to hepatic stellate cells (HSCs) activation, further promoting apoptosis of damaged hepatocytes, while stem cells can work on fibrosis-related intrahepatic cells through relevant transduction pathways. Herein, this article elucidates the phenomena and the mechanisms of the crosstalk between various types of stem cells and intrahepatic cells including HSCs and hepatocytes in the treatment of liver fibrosis. Then, the important influences of chemical compositions, mechanical properties and blood flow on liver fibrosis models with stem cell treatment are emphasized. Clinical trials on stem cell-based therapy for liver fibrosis are also briefly summarized. Finally, continuing challenges and future directions of stem cell-based therapy for hepatic fibrosis are discussed. In short, stem cells play an important advantage and have a great potential in treating liver fibrosis by interacting with intrahepatic cells. Clarifying how stem cells interact with intrahepatic cells to change the progression of liver fibrosis is of great significance for a deeper understanding of liver fibrosis mechanisms and targeted therapy.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Fibrose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Células-Tronco/metabolismo
12.
Int J Biol Macromol ; 155: 1450-1459, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31734365

RESUMO

Transcatheter arterial chemoembolization (TACE) is well known as an effective treatment for hepatocellular carcinoma (HCC). In the present study, a novel embolic agent of sodium alginate (SA)-modified silk fibroin (SF) microspheres was successfully prepared by emulsifying cross-linking method. The SA-modified SF microspheres were evaluated for the ability of embolization by investigating the morphology, particle size, swelling ratio, degradation, cytotoxicity, blood compatibility, and in vivo embolization. The results found that SA-modified SF microspheres had smooth surfaces and good sphericity. Swelling ratio of the microspheres can meet the requirements of arterial embolic agent and have pH and temperature sensitivity. Furthermore, hemolytic and anticoagulant studies have proved that the microspheres have good blood compatibility. Cytotoxicity tests indicated that the microspheres could promote the proliferation of fibroblasts and HUVEC. In vivo embolization evaluation of microspheres revealed that the arteries could be embolized by SA-modified SF microspheres in 3 weeks. The ability of drug loading and releasing of microspheres was proved by the controlled release profile of Adriamycin hydrochloride. The findings indicated that the SA-modified SF microspheres can be used as a potentially biodegradable arterial embolic agent for liver cancer therapy.


Assuntos
Alginatos/química , Alginatos/síntese química , Artérias/efeitos dos fármacos , Embolização Terapêutica/métodos , Fibroínas/química , Fígado/irrigação sanguínea , Microesferas , Alginatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Fibroínas/toxicidade , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio
13.
Insects ; 10(10)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547578

RESUMO

The spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), is a polyphagous pest originating in China and now widely distributed in Asian countries. This is one of the more serious forestry pests with a broad host range and causes significant economic losses. Molecular comparison has been used to investigate this pest's origin in China, and recent studies have explored the genetic structure among populations in Korea. However, the population structure of this pest in China remains poorly understood. In this study, 13 microsatellite markers and two mitochondrial markers (from nicotinamide adenine dinucleotid (NADH) dehydrogenase subunit 2 (ND2) and NADH dehydrogenase subunit 6 (ND6) regions) were used to reveal the origins and dispersal of L. delicatula based on a genetic analysis of Chinese populations from eight locations. Results show a low to high level of genetic differentiation among populations and significant genetic differentiation between both two clusters and four clusters. The network and phylogenetic analyses for mitochondrial haplotypes and population structure analyses for microsatellite datasets suggest that there is potential gene flow between geographical populations. The populations from Zhejiang and Fujian provinces may come from the other geographical populations in north China. The populations from Beijing, Henan, and Anhui provinces were regarded as the major source of migrants with a high number of migrants leaving (the effective number of migrants (Nem) = 24.40) and the low number of migrants entering (Nem = 2.05) based on the microsatellite dataset, where significant asymmetrical effective migrants to the other populations were detected by non-overlapping 95% confidence intervals.

15.
J Biomed Mater Res B Appl Biomater ; 107(5): 1471-1482, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30296361

RESUMO

Few burn dressings can self-regulate the optimal humidity levels that are required for wound healing, while also providing good anti-adhesive properties to prevent damage that can occur when wound dressings are changed. Consequently, a water-soluble carboxymethylcellulose sodium/sodium alginate/chitosan (CMC-Na/SA/CS) composite hydrogel has been developed as a potential burn wound dressing, with orthogonal testing revealing an optimal ratio of CMC-Na, SA, and CS as 2, 3, and 1 wt % for hydrogel preparation, respectively. The resultant hydrogel has been formulated into composite wound dressings that were then used for the treatment of deep second degree burn wounds in Sprague-Dawley (SD) rats. Analysis of the physical properties of this dressing revealed that it exhibits good water vapor permeability properties that promote the healing of deep second-degree burn wounds. The pro-healing mechanism of the dressing has been investigated Vascular endothelial growth factor (VEGF) expression was upregulated and basic fibroblast growth factor (bFGF) expression was downregulated in the early periods of wound healing, with upregulation of bFGF then occurring at a later stage of wound healing. At the same time, the wound dressing decreased the levels of tumor necrosis factor-α and interleukin-6, thus validating its beneficial effect on the wound healing process at a biomolecular level. In conclusion, this new hydrogel dressing was shown to exhibit excellent self-regulatory and anti-adhesive properties that synergistically promote the healing of burn wounds in rats, thus providing promising results that may have clinical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1471-1482, 2019.


Assuntos
Queimaduras/tratamento farmacológico , Hidrogéis , Aderências Teciduais/prevenção & controle , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Alginatos/química , Alginatos/farmacologia , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Quitosana/química , Quitosana/farmacologia , Modelos Animais de Doenças , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
16.
Clin Sci (Lond) ; 131(5): 381-394, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082516

RESUMO

High-mobility group box-1 (HMGB1) protein, as one of the well-known damage-associated molecular pattern molecules (DAMPs), is enriched in chronic hepatitis B virus (HBV) infection and has a context-dependent role in autophagy, a highly conserved self-digestive process in response to environmental stress. Recent mouse studies indicate that autophagy is highly active in regulatory T (Treg)-cells. In the present study, we evaluated spontaneous and induced autophagy of peripheral Treg cells from 98 patients with chronic hepatitis B (CHB), by measuring levels of lipidated form of microtubule-associated light chain 3 (LC3-II, marker for closed autophagosomes) and observing autophagic vacuoles (AV) with transmission electron microscope. No significant difference was found in spontaneous autophagy of either Treg or CD4+ naive cells when comparing CHB patients with healthy subjects, apart from CHB-Treg showed significantly higher autophagic activity after activation by anti-CD3-CD28 beads. Besides, incubation of CHB-Treg cells with CHB-serum greatly maintained their autophagic behaviour, which could be significantly diminished by blocking HMGB1 with the neutralizing antibody. Further, we characterized time- and dose-dependent effects by recombinant HMGB1 protein on autophagy of CHB-Treg cells. We also documented a significant up-regulation of HMGB1 and its receptors [toll-like receptor (TLR4), receptor for advanced glycation end-product (RAGE)] in both peripheral and intra-hepatic microenvironments of CHB patients. Moreover, the RAGE-extracellular regulated protein kinases (ERK) axis and rapamycin-sensitive components of mammalian target of rapamycin (mTOR) pathways were demonstrated in vitro to be involved in HMGB1-induced autophagy of Treg cells. Additionally, HMGB1-induced autophagy could maintain cell survival and functional stability of CHB-Treg cells. Our findings could open new perspectives in developing therapeutic strategies to activate specific anti-HBV immunity by diminishing Treg autophagy.


Assuntos
Autofagia , Proteína HMGB1/metabolismo , Hepatite B Crônica/imunologia , Linfócitos T Reguladores/fisiologia , Adulto , Antígenos de Neoplasias/metabolismo , Estudos de Casos e Controles , Feminino , Hepatite B Crônica/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
17.
PLoS One ; 8(5): e64373, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696886

RESUMO

BACKGROUND: The migration of hepatic stellate cells (HSCs) is essential to the hepatic fibrotic response, and recently High-mobility group box 1 (HMGB1) has been shown up-regulated during liver fibrosis. Nevertheless, whether HMGB1 can modulate the proliferation and migration of HSCs is poorly understood, as well as the involved intracellular signaling. In this study, we examined the effect of HMGB1 on proliferation, migration, pro-fibrotic function of HSCs and investigated whether toll-like family of receptor 4 (TLR4) dependent signal pathway is involved in the intracellular signaling regulation. METHODOLOGY/PRINCIPAL FINDINGS: Modified transwell chamber system to mimic the space of Disse was used to evaluate the migration of human primary HSCs, and the protein expressions of related signal factors were evaluated by western blot. Cell proliferation was analyzed by MTT assay, the pro-fibrotic functions of HSCs by qRT-PCR and ELISA respectively. Recombinant human HMGB1 could significantly promote migration of HSCs under both haptotactic and chemotactic stimulation, especially the latter. Human TLR4 neutralizing antibody could markedly inhibit HMGB1-induced migration of HSCs. HMGB1 could enhance the phosphorylation of JNK and PI3K/Akt, and TLR4 neutralizing antibody inhibited HMGB1-enhanced phosphorylation of JNK and PI3K/Akt and activation of NF-κB. JNK inhibitor (SP600125) and PI3K inhibitor (LY 294002) significantly inhibited HMGB1-induced proliferation and migration of HSCs, and also reduced HMGB1-enhanced related collagen expressions and pro-fibrotic cytokines production. CONCLUSIONS/SIGNIFICANCE: HMGB1 could significantly enhance migration of HSCs in vitro, and TLR4-dependent JNK and PI3K/Akt signal pathways are involved in the HMGB1-induced proliferation, migration and pro-fibrotic effects of HSCs, which indicates HMGB1 might be an effective target to treat liver fibrosis.


Assuntos
Proteína HMGB1/farmacologia , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA