Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Death Dis ; 15(8): 573, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117605

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.


Assuntos
Araquidonato 5-Lipoxigenase , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Evasão Tumoral , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Animais , Camundongos , Araquidonato 5-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/genética , Linhagem Celular Tumoral , Proteínas S100/metabolismo , Proteínas S100/genética , Fosfolipases A2 Citosólicas/metabolismo , Fosfolipases A2 Citosólicas/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C57BL , Exaustão das Células T
2.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943117

RESUMO

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Assuntos
Progressão da Doença , Neoplasias Pancreáticas , Proteômica , Fatores de Transcrição SOXC , Proteínas Ativadoras de ras GTPase , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Transdução de Sinais , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética
3.
Heliyon ; 10(9): e29914, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737285

RESUMO

This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.

4.
J Gastrointest Oncol ; 15(1): 22-32, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482225

RESUMO

Background: Gastric cancer (GC) is a common tumors in the digestive tract, and effective treatment methods are still lacking. Bone morphogenetic protein 6 (BMP6) is closely related to the occurrence and development of various tumors, but its relevance to GC is still unclear. The aim of the study was to explore the relationship between BMP6 and the occurrence and development of GC. Methods: In this study, we investigated the relationship between BMP6 and the prognosis of GC patients using bioinformatics technology and clinical tissue samples. We also explored the connection between BMP6 and the biological behavior of GC cells through molecular biology experiments and relevant in vivo animal experiments. Finally, we examined the mechanisms by which BMP6 inhibits the onset and progression of GC. Results: Through analysis of The Cancer Genomics Atlas (TCGA) database, we observed that BMP6 is expressed at low levels in GC, and its low expression is associated with a poor prognosis in GC patients. Cell experiments demonstrated that BMP6 expression can influence the proliferation of GC cells both in vitro and in vivo. Furthermore, we discovered that BMP6 is linked to the nuclear factor-κB (NF-κB) pathway, and subsequent experiments confirmed that BMP6 can inhibit the biological activity of GC cells by activating the NF-κB pathway. Conclusions: Our findings suggest that BMP6 is a potential prognostic biomarker in GC and can regulate the biological activity of GC cells through the NF-κB pathway. BMP6 may serve as a promising therapeutic target for GC, and our study introduces novel ideas for the prevention and treatment of this disease.

5.
Eur J Med Res ; 29(1): 177, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494503

RESUMO

BACKGROUND: Phosducin-like 3 (PDCL3) is a member of the photoreceptor family, characterized by a thioredoxin-like structural domain and evolutionary conservation. It plays roles in angiogenesis and apoptosis. Despite its significance, research on the biological role of PDCL3 in liver hepatocellular carcinoma (LIHC) remains limited. This study aims to explore the prognostic value and potential mechanisms of PDCL3 in cancer, particularly in LIHC, through bioinformatics analysis. METHODS: RNA-seq data and corresponding clinical information for pan-cancer and LIHC were extracted from the TCGA database to analyze PDCL3 expression and survival prognosis. Differential expression of PDCL3 was analyzed using the HPA database. GO and KEGG enrichment analysis were performed for PDCL3-associated genes. The relationship between PDCL3 expression and various immune cell types was examined using the TIMER website. Clinical samples were collected, and immunohistochemistry and immunofluorescence experiments were conducted to validate the differential expression of PDCL3 in LIHC and normal tissues. In vitro assays, including CCK-8, wound healing, Transwell, and colony formation experiments, were employed to determine the biological functions of PDCL3 in LIHC cells. RESULTS: Analysis from TIMER, GEPIA, UALCAN, and HPA databases revealed differential expression of PDCL3 in various tumors. Prognostic analysis from GEPIA and TCGA databases indicated that high PDCL3 expression was associated with poorer clinical staging and prognosis in LIHC. Enrichment analysis of PDCL3-associated genes revealed its involvement in various immune responses. TCGA and TIMER databases showed that high PDCL3 expression in LIHC decreased tumor immune activity by reducing macrophage infiltration. PDCL3 exhibited positive correlations with multiple immune checkpoint genes. Immunohistochemistry (IHC) and immunofluorescence (IF) experiments confirmed elevated PDCL3 expression in LIHC tissues compared to adjacent normal tissues. In vitro experiments demonstrated that PDCL3 promoted LIHC cell proliferation, migration, invasion, and colony-forming ability. CONCLUSION: PDCL3 is highly expressed in various cancer types. Our study suggests that elevated PDCL3 expression in hepatocellular carcinoma is associated with poorer prognosis and may serve as a potential diagnostic biomarker for LIHC. PDCL3 may regulate the biological functions of LIHC by modulating immune infiltration. However, the precise regulatory mechanisms of PDCL3 in cancer warrant further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Biomarcadores , Proteínas de Transporte , Proteínas do Tecido Nervoso
6.
Tohoku J Exp Med ; 263(1): 17-25, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38267060

RESUMO

MicroRNAs (miRNAs) are related to the regulation of bone metabolism. Delayed fracture healing (DFH) is a common complication after fracture surgery. The study attempted to examine the role of miR-98-5p and bone morphogenetic protein (BMP)-2 with the onset of DFH. A total of 140 patients with femoral neck fracture were recruited, including 80 cases with normal fracture healing (NFH) and 60 cases with DFH. MC3T3-E1 cells were induced cell differentiation for cell function experiments. Real-time quantitative polymerase chain reaction (RT-qPCR) was carried out to test mRNA levels. Cell proliferation and apoptosis were determined via CCK-8 and flow cytometry assay. Luciferase reporter assay was done to verify the targeted regulatory relationship of miR-98-5p with BMP-2. In comparison with NFH cases, DFH patients owned high levels of serum miR-98-5p and low concentration of BMP-2, and the levels of the two indexes are significantly negatively correlated. Both miR-98-5p and BMP-2 had the ability to predict DFH, while their combined diagnostic value is the highest. BMP-2 was demonstrated to be the target gene of miR-98-5p. Overexpression of BMP-2 reversed the role of miR-98-5p in MC3T3-E1 cell proliferation, apoptosis and differentiation. Increased miR-98-5p and decreased BMP-2 serve as potential biomarkers for the diagnosis of DFH. MiR-98-5p overexpression inhibits osteoblast proliferation and differentiation via targeting BMP-2.


Assuntos
Apoptose , Proteína Morfogenética Óssea 2 , Proliferação de Células , Consolidação da Fratura , MicroRNAs , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/genética , Sequência de Bases , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/genética , Linhagem Celular , Fraturas do Colo Femoral/metabolismo , Fraturas do Colo Femoral/genética , Consolidação da Fratura/genética , MicroRNAs/genética , MicroRNAs/metabolismo
7.
Breast Cancer ; 31(1): 96-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914960

RESUMO

BACKGROUND: Solute carrier family 38 member 5 (SLC38A5), as an amino acid transporter, play a vital role in cellular biological processes. In this study, we analyzed the function of SLC38A5 and its potential mechanism in breast cancer (BC) progression. METHODS: The expression of SLC38A5 in cancer and adjacent-normal tissues was analyzed by qRT-PCR and Western blot, and its correlation with patient prognosis was analyzed. The immunohistochemical staining of cancer tissues and adjacent-normal tissues was performed on SLC38A5-positive specimens. BC mice were successfully applied to examine the role of SLC38A5 on tumor proliferation using the CCK-8 assay. In BC cells and mouse tumor tissues, SLC38A5 and PCNA expression were determined by Western blotting. RESULTS: The study found that SLC38A5 was highly expressed in BC patients and associated with a poor survival. SLC38A5 silencing inhibited BC cell viability and glutamine uptake. In addition, SLC38A5 overexpression promoted BC cell viability via the glutamine metabolism. SLC38A5 inhibited cisplatin chemosensitivity in BC cells. Importantly, SLC38A5 silencing inhibited tumor growth in vivo. CONCLUSION: Our findings suggest that SLC38A5 enhances BC cell viability by glutamine metabolism, inhibits the chemical sensitivity of cisplatin in BC cells, and promotes tumor growth, emphasizing the clinical relevance of SLC38A5 in BC management as a novel potential therapeutic target.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Glutamina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Transporte de Aminoácidos Neutros/uso terapêutico
8.
NPJ Precis Oncol ; 7(1): 133, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081923

RESUMO

We utilized scRNA-seq, a well-established technology, to uncover the gene expression characteristics of IL34+ CAFs within HCC. We analyzed the related mechanisms through in vitro and in vivo assays. To begin, we acquired scRNA-seq datasets about HCC, which enabled us to identify distinct cell subpopulations within HCC tissues. We conducted a differential analysis to pinpoint DEGs associated with normal fibroblasts (NFs) and CAFs. Subsequently, we isolated NFs and CAFs, followed by the sorting of IL34+ CAFs. These IL34+ CAFs were then co-cultured with T cells and HCC cells to investigate their potential role in Tregs infiltration, CD8+ T cell toxicity, and the biological processes of HCC cells. We validated our findings in vivo using a well-established mouse model. Our analysis of HCC tissues revealed the presence of seven primary cell subpopulations, with the most significant disparities observed within fibroblast subpopulations. Notably, high IL34 expression was linked to increased expression of receptor proteins and enhanced proliferative activity within CAFs, with specific expression in CAFs. Furthermore, we identified a substantial positive correlation between IL34 expression and the abundance of Tregs. Both in vitro and in vivo experiments demonstrated that IL34+ CAFs promoted Tregs infiltration while suppressing CD8+ T cell toxicity. Consequently, this promoted the growth and metastasis of HCC. In summary, our study affirms that IL34+ CAFs play a pivotal role in augmenting the proliferative activity of CAFs, facilitating Tregs infiltration, and inhibiting CD8+ T cell toxicity, ultimately fostering the growth and metastasis of HCC.

9.
Cancer Cell Int ; 23(1): 294, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007443

RESUMO

Triple-negative breast Cancer (TNBC) is a highly malignant cancer with unclear pathogenesis. Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) vitally influence tumor onset and progression. Thus, this research aimed to identify distinct subgroups of CAF using single-cell and TNBC-related information from the GEO and TCGA databases, respectively. The primary aim was to establish a novel predictive model based on the CAF features and their clinical relevance. Moreover, the CAFs were analyzed for their immune characteristics, response to immunotherapy, and sensitivity to different drugs. The developed predictive model demonstrated significant effectiveness in determining the prognosis of patients with TNBC, TME, and the immune landscape of the tumor. Of note, the expression of GPR34 was significantly higher in TNBC tissues compared to that in other breast cancer (non-TNBC) tissues, indicating that GPR34 plays a crucial role in the onset and progression of TNBC. In summary, this research has yielded a novel predictive model for TNBC that holds promise for the accurate prediction of prognosis and response to immunotherapy in patients with TNBC.

10.
Discov Oncol ; 14(1): 147, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555866

RESUMO

BACKGROUND: Hepatocellular carcinoma still has a high incidence and mortality rate worldwide, and further research is needed to investigate its occurrence and development mechanisms in depth in order to identify new therapeutic targets. Ferritinophagy is a type of autophagy and a key factor in ferroptosis that could influence tumor onset and progression. Although, the potential role of ferritinophagy-related genes (FRGs) in liver hepatocellular carcinoma (LIHC) is unknown. METHODS: Single-cell RNA sequencing (scRNA-seq) data of LIHC were obtained from the Gene Expression Omnibus (GEO) dataset. In addition, transcriptome and clinical follow-up outcome data of individuals with LIHC were extracted from the The Cancer Genome Atlas (TCGA) dataset. FRGs were collected through the GeneCards database. Differential cell subpopulations were distinguished, and differentially expressed FRGs (DEFRGs) were obtained. Differential expression of FRGs and prognosis were observed according to the TCGA database. An FRG-related risk model was constructed to predict patient prognosis by absolute shrinkage and selection operator (LASSO) and COX regression analyses, and its prognosis predictive power was validated. Ultimately, the association between risk score and tumor microenvironment (TME), immune cell infiltration, immune checkpoints, drug sensitivity, and tumor mutation burden (TMB) was analyzed. We also used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to validate the expression of key genes in normal liver cells and liver cancer cells. RESULTS: We ultimately identified 8 cell types, and 7 differentially expressed FRGs genes (ZFP36, NCOA4, FTH1, FTL, TNF, PCBP1, CYB561A3) were found among immune cells, and we found that Monocytes and Macrophages were closely related to FRGs genes. Subsequently, COX regression analysis showed that patients with high expression of FTH1, FTL, and PCBP1 had significantly worse prognosis than those with low expression, and our survival prediction model, constructed based on age, stage, and risk score, showed better prognostic prediction ability. Our risk model based on 3 FRGs genes ultimately revealed significant differences between high-risk and low-risk groups in terms of immune infiltration and immune checkpoint correlation, drug sensitivity, and somatic mutation risk. Finally, we validated the key prognostic genes FTH1, FTL, using qRT-PCR, and found that the expression of FTH1 and FTL was significantly higher in various liver cancer cells than in normal liver cells. At the same time, immunohistochemistry showed that the expression of FTH1, FTL in tumor tissues was significantly higher than that in para-tumor tissues. CONCLUSION: This study identifies a considerable impact of FRGs on immunity and prognosis in individuals with LIHC. The collective findings of this research provide new ideas for personalized treatment of LIHC and a more targeted therapy approach for individuals with LIHC to improve their prognosis.

11.
Cell Signal ; 111: 110840, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37543099

RESUMO

MicroRNAs (miRs, miRNAs) are known players in the regulatory network of pancreatic tumorigenesis, but the downstream effectors remain poorly characterized. This study addressed this issue based on in silico prediction, in vitro experiments, and in vivo validation. The differentially expressed PCa-related miRNAs and bioinformatics tools predicted downstream regulators. The expression of miR-147b was examined in PCa cell lines. Putative targets of miR-147b were predicted by a publicly available database and confirmed by luciferase activity assay. Mimic/inhibitor, siRNA/overexpression plasmid, or pifithrin-α (p53 inhibitor) were delivered into PCa cells to assess the effect of miR-147b, HIPK2, and p53 on malignant phenotypes of PCa cells. AntagomiR-147b and shRNA targeting HIPK2 were introduced to xenograft-bearing nude mice for in vivo experiments. The expression of miR-147b was significantly increased in PCa cell lines. Ectopic expression of miR-147b promoted the malignant phenotypes of PCa cells and inhibited their apoptosis. HIPK2 was confirmed as a target gene of miR-147b. Inhibiting miR-147b could promote HIPK2 expression and potentially activate the p53 pathway, inhibiting PCa cell growth. In vivo experiments suggested that miR-147b inhibition suppressed the growth of xenograft tumors in nude mice, while HIPK2 knockdown counteracted its effect. Collectively, our work reveals a novel miR-147b-mediated carcinogenic regulatory network in PCa that may be a viable target for PCa treatment.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Camundongos Nus , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , MicroRNAs/metabolismo , Linhagem Celular , Proliferação de Células/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
12.
Mol Med ; 29(1): 116, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641009

RESUMO

BACKGROUND: Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS: A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS: Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION: Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.


Assuntos
Cálculos Biliares , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Aquaporina 3 , Sirtuína 1/genética , Lipopolissacarídeos , Células Epiteliais , Mucosa , Transdução de Sinais
15.
Discov Oncol ; 14(1): 4, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631680

RESUMO

PURPOSE: Recent studies have revealed an increase in the incidence rate of non-alcoholic fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC). Furthermore, the association of Sphingosine 1-phosphate receptor 2 (S1PR2) with various types of tumours is identified, and the metabolism of conjugated bile acids (CBAs) performs an essential function in the onset and development of HCC. However, the association of CBA and S1PR2 with NAFLD-HCC is unclear. METHODS: The relationship between the expression of S1PR2 and the prognosis of patients suffering from NAFLD-HCC was investigated by bioinformatics techniques. Subsequently, the relationship between S1PR2 and the biological behaviours of HCC cell lines Huh 7 and HepG2 was explored by conducting molecular biology assays. Additionally, several in vivo animal experiments were carried out for the elucidation of the biological impacts of S1PR2 inhibitors on HCC cells. Finally, We used Glycodeoxycholic acid (GCDA) of CBA to explore the biological effects of CBA on HCC cell and its potential mechanism. RESULTS: High S1PR2 expression was linked to poor prognosis of the NAFLD-HCC patients. According to cellular assay results, S1PR2 expression could affect the proliferation, invasion, migration, and apoptosis of Huh 7 and HepG2 cells, and was closely associated with the G1/G2 phase of the cell cycle. The experiments conducted in the In vivo conditions revealed that the overexpression of S1PR2 accelerated the growth of subcutaneous tumours. In addition, JTE-013, an antagonist of S1PR2, effectively inhibited the migration and proliferation of HCC cells. Furthermore, the bioinformatics analysis highlighted a correlation between S1PR2 and the PI3K/AKT/mTOR pathway. GCDA administration further enhanced the expression levels of p-AKT, p-mTOR, VEGF, SGK1, and PKCα. Moreover, both the presence and absence of GCDA did not reveal any significant change in the levels of S1PR2, p-AKT, p-mTOR, VEGF, SGK1, and PKCα proteins under S1PR2 knockdown, indicating that CBA may regulates the PI3K/AKT/mTOR pathway by mediating S1PR2 expression. CONCLUSION: S1PR2 is a potential prognostic biomarker in NAFLD-HCC. In addition, We used GCDA in CBAs to treat HCC cell and found that the expression of S1PR2 was significantly increased, and the expression of PI3K/AKT/mTOR signalling pathway-related signal molecules was also significantly enhanced, indicating that GCDA may activate PI3K/AKT/mTOR signalling pathway by up-regulating the expression of S1PR2, and finally affect the activity of hepatocellular carcinoma cells. S1PR2 can be a candidate therapeutic target for NAFLD-HCC. Collectively, the findings of this research offer novel perspectives on the prevention and treatment of NAFLD-HCC.

16.
Transl Cancer Res ; 11(11): 4126-4136, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523292

RESUMO

Background: Connexin (CX) 43 makes glioblastoma resistant to temozolomide, the first-line chemotherapy drug. However, targeting CX43 is very difficult because the mechanisms underlying CX43-mediated resistance remain unclear. CX43 is highly expressed in glioblastoma, which is closely associated with poor prognosis and chemotherapy resistance. The present study was to analyze the mechanism of microRNA (miR)-1 in regulating the proliferation and invasion of glioma cells. Methods: The effects of knockdown of miR-1 on the growth of glioma cell lines were observed by establishing blank, miR-1 inhibitor, and miR-1 mimic groups. Cell proliferation was detected using a Cell Counting Kit-8 (CCK-8) assay, cell apoptosis was detected by flow cytometry, and protein expression was detected by western blot. We used the Student's t-test to assess continuous data between the two groups and the Kruskal-Wallis test was adopted for multiple group comparisons. Results: Compared with the mimics normal control (NC) group, the apoptosis rate of the miR-1-3p mimics group was decreased, while that of the miR-1-3p inhibitor group was increased compared to the inhibitor NC group. In addition, the miR-1-3p mimics model of U251 cells exerted an inhibitory effect on the invasion ability of cells, whereas the miR-1-3p inhibitor model of U251 cells showed an invasion-promoting effect. The dual-luciferase assay showed that miR-1-3p had a targeted relationship with the CX43 gene. Conclusions: Down-regulation of CX43 expression by miR-1 inhibited the infiltration and growth of glioma cells and further promoted the apoptosis of glioma cells by regulating CX43 expression.

17.
Hum Immunol ; 83(12): 832-842, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244872

RESUMO

OBJECTIVE: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous tumor. Currently, macrophage-capping protein (CAPG) has been discovered to play a crucial part as a regulator in various cancers. However, it still remains unclear regarding its regulatory mechanism in DLBCL. Therefore, this study focused on revealing the mechanism underlying CAPG in DLBCL. METHODS: The bioinformatics analysis was conducted to predict the expression of CAPG in DLBCL and its downstream target genes. qRT-PCR was utilized to detect mRNA expression levels of CAPG and CEBPA. Western blot was performed to examine the expression levels of related proteins. Then we employed flow cytometry for the analysis of cell cycle and apoptosis. We also used MTT assay to measure cell survival and IHC assay to detect CAPG expression in DLBLC tissues. Then, ChIP was used to determine the binding of CEBPA and CAPG. For in vivo experiments, xenograft models were employed to investigate the effect of CAPG on DLBCL. RESULTS: High-level of CAPG expression was found in DLBCL cells and tissues. CAPG could strengthen the proliferative and invasive abilities of DLBCL cells, inhibit cell apoptosis, and activate PI3K/AKT signaling pathway. CAPG overexpression accelerated malignant progression of DLBCL cells. In addition, CAPG expression was regulated by CEBPA. CONCLUSION: CAPG enhances the proliferation and invasion of DLBCL cells by promoting PI3K/AKT signaling pathway, which is expected to be a promising target for DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Fosfatidilinositol 3-Quinases , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Animais
18.
Front Pharmacol ; 13: 972934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249757

RESUMO

Background: FRAS1 (Fraser syndrome protein 1), together with FREM1 (the Fras1-related extracellular matrix proteins 1) and FREM2, belonging to the FRAS1/FREM extracellular matrix protein family, are considered to play essential roles in renal organogenesis and cancer progression. However, their roles in kidney renal clear cell carcinoma (KIRC) remain to be elucidated. Methods: FRAS1/FREM RNA expression analysis was performed using TCGA/GTEx databases, and valided using GEO databases and real-time PCR. Protein expression was peformed using CPTAC databases. Herein, we employed an array of bioinformatics methods and online databases to explore the potential oncogenic roles of FRAS1/FREM in KIRC. Results: We found that FRAS1, FREM1 and FREM2 genes and proteins expression levels were significantly decreased in KIRC tissues than in normal tissues. Decreased FRAS1/FREM expression levels were significantly associated with advanced clinicopathological parameters (pathological stage, grade and tumor metastasis status). Notably, the patients with decreased FRAS1/FREM2 expression showed a high propensity for metastasis and poor prognosis. FRAS1/FREM were correlated with various immune infiltrating cells, especially CD4+ T cells and its corresponding subsets (Th1, Th2, Tfh and Tregs). FRAS1 and FREM2 had association with DNA methylation and their single CpG methylation levels were associated with prognosis. Moreover, FRAS1/FREM might exert antitumor effects by functioning in key oncogenic signalling pathways and metabolic pathways. Drug sensitivity analysis indicated that high FRAS1 and FREM2 expression can be a reliable predictor of targeted therapeutic drug response, highlighting the potential as anticancer drug targets. Conclusion: Together, our results indicated that FRAS1/FREM family members could be potential therapeutic targets and valuable prognostic biomarkers of KIRC.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1415-1422, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208243

RESUMO

OBJECTIVE: To investigate the expression of miR-126 in diffuse large B-cell lymphoma (DLBCL) tissues and its biological function. METHODS: The lymphoma tissues of 46 DLBCL patients in our hospital were selected as the research object, and the lymph node hyperplasia tissue of 31 patients with reactive hyperplasia were selected as controls. The expression level of miR-126 in the patients' tissues was detected by real-time fluorescent quantitative PCR (RT-qPCR), and the correlation of miR-126 expression with the pathological characteristics and prognosis of the patients was analyzed. The DLBCL cell line SU-DHL-4 was transfected with miR-126 inhibitor and its negative control (NC inhibitor) or miR-126 mimics and its negative control (NC mimics). RT-qPCR assay was used to detect the expression level of miR-126 in cells; MTT method was used to detect cell proliferation activity; single clone formation test was used to detect cells colony-forming ability; Annexin V/PI double staining assay was used to detect cell apoptosis; Transwell test was used to detect cell migration and invasion ability; the expression levels of apoptosis-related proteins cleaved-Caspase-3, Bcl-2 and Bax were detected by Western blot. RESULTS: miR-126 was highly expressed in lymphoma tissues of DLBCL patients, and its expression level was significantly correlated with Hans type, IPI score and Ann-Arbor stage of DLBCL patients (P<0.05). Kaplan-Meier survival analysis showed that the survival rate of DLBCL patients with high expression of miR-126 was significantly lower than that of patients with low expression (P<0.05). Compared with the NC mimics group, the miR-126 expression level, cell proliferation rate, number of colony-forming units, migration and invasion ability, and Bcl-2 protein expression level in the miR-126 mimics group were significantly increased (P<0.05), but the cells apoptotic rate, cleaved-Caspase-3 and Bax protein expression levels were significantly reduced (P<0.05). Compared with the NC inhibitor group, the miR-126 expression level, cell proliferation rate, number of colony-forming units, migration and invasion ability, and Bcl-2 protein expression level in the miR-126 inhibitor group were significantly reduced (P<0.05), but the cells apoptosis rate, cleaved-Caspase-3 and Bax protein expression levels were significantly increased (P<0.05). CONCLUSION: miR-126 is highly expressed in lymphoma tissues of DLBCL patients and its expression level is related to the poor prognosis of patients. miR-126 can promote DLBCL cell proliferation, invasion and migration, and inhibit cell apoptosis.


Assuntos
Linfoma Difuso de Grandes Células B , MicroRNAs , Anexina A5/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Int J Biol Sci ; 18(10): 4071-4087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844791

RESUMO

Centromere protein U (CENPU), a centromere-binding protein required for cellular mitosis, has been reported to be closely associated with carcinogenesis in multiple malignancies; however, the role of CENPU in hepatocellular carcinoma (HCC) is still unclear. Herein, we investigated its biological role and molecular mechanism in the development of HCC. High CENPU expression in HCC tissue was observed and correlated positively with a poor prognosis in HCC patients. CENPU knockdown inhibited the proliferation, metastasis, and G1/S transition of HCC cells in vivo and in vitro, while ectopic expression of CENPU exerted the opposite effects. Mechanistically, CENPU physically interacted with E2F6 and promoted its ubiquitin-mediated degradation, thus affecting the transcription level of E2F1 and further accelerating the G1/S transition to promote HCC cell proliferation. E2F1 directly binds to the CENPU promoter and increases the transcription of CENPU, thereby forming a positive regulatory loop. Collectively, our findings indicate a crucial role for CENPU in E2F1-mediated signalling for cell cycle progression and reveal a role for CENPU as a predictive biomarker and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Fator de Transcrição E2F6/metabolismo , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F6/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metástase Neoplásica , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA