Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202401373, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659181

RESUMO

Inorganic solid-state electrolytes (SSEs) play a vital role in high-energy all-solid-state batteries (ASSBs). However, the current method of SSE preparation usually involves high-energy mechanical ball milling and/or a high-temperature annealing process, which is not suitable for practical application. Here, a facile strategy is developed to realize the scalable synthesis of cost-effective aluminum-based oxyhalide SSEs, which involves a self-propagating method by the exothermic reaction of the raw materials. This strategy enables the synthesis of various aluminum-based oxyhalide SSEs with tunable components and high ionic conductivities (over 10-3 S cm-1 at 25 °C) for different cations (Li+, Na+, Ag+). It is elucidated that the amorphous matrix, which mainly consists of various oxidized chloroaluminate species that provide numerous sites for smooth ion migration, is actually the key factor for the achieved high conductivities. Benefit from their easy synthesis, low cost, and low weight, the aluminum-based oxyhalide SSEs synthesized by our approach could further promote practical application of high-energy-density ASSBs.

2.
Dalton Trans ; 50(18): 6333-6342, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885125

RESUMO

Hybrid electrocatalysts derived from surface self-reconstruction during reaction processes can facilitate charge transfer between different phases and nanostructures by their unique interfaces. Herein, amorphous/crystalline hybrid iron disulfide obtained by self-reconstruction is developed for the first time for the oxygen evolution reaction (OER). The amorphous/crystalline hybrid FeS2 catalyst exhibited a high OER activity with an overpotential of only 189.5 mV (IR-corrected) to deliver 10 mA cm-2 in 1.0 M KOH, which was superior to that of the commercial RuO2. Notably, in the two-electrode system with the amorphous/crystalline hybrid FeS2 as the anode electrocatalyst and Pt/C as the cathode, the catalytic activity towards the overall water splitting was enhanced with a voltage of only 1.43 V at 10 mA cm-2. The phase, composition and surface structure were changed greatly before and after the reaction. All these surface reconstructions after the OER reaction may play significant roles in the high electronic catalytic efficiency. Therefore, the study of the surface reconstruction of catalysts during the reaction process is very important for the structure-performance relationship and the design of efficient hybrid electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA