Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395367

RESUMO

Soil samples were collected in at different depths from the conflagration area in Liangshan Yi Autonomous Region, China, to investigate the distribution characteristics and ecological and human health risks of heavy metals after a wildfire. The samples collected comprise wildfire ash (WA) above the soil surface, ash soil (AS) 0-5 cm, and plain soil (PS) 5-15 cm below the soil surface. Additionally, reference soil (RS) was collected from a nearby unburned area at the same latitude as the conflagration area. The results showed that the concentrations of zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd) in the WA and AS were significantly higher than in reference soil (RS) (p < 0.05). Concentrations of Pb in the PS were 2.52 times higher than that in RS (17.9 mg kg-1) (p < 0.05). The AS and WA had the highest Index of potential ecological risks (RI > 600). In addition, The Cd in AS and WA contributed the most to the highest Improved nemerow index (INI) and RI with a contribution of more than 80%. The concentration of heavy metals was used to establish non-carcinogenic effects and cancer risks in humans via three exposure pathways: accident ingestion of soil, dermal contact with soil, and inhalation of soil particles. Hazard index (HI) values of each sample were all less than 1, indicating the non-carcinogenic risk was within the acceptable range and would not adversely affect the local population's health. The Cancer risk (CR) values of Cr, As, Cd, and Ni were all below 1 × 10-6, indicating that heavy metal pollution from this wildfire did not pose a cancer risk to residents.


Assuntos
Metais Pesados , Neoplasias , Poluentes do Solo , Incêndios Florestais , Humanos , Solo , Monitoramento Ambiental , Cádmio , Chumbo , Medição de Risco , Poluentes do Solo/análise , Metais Pesados/análise , China
2.
Environ Pollut ; 344: 123421, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253166

RESUMO

It is generally accepted that sulfur can passivate the bioavailability of heavy metals in soil, but it is not clear whether high sulfur in cadmium (Cd) and chromium (Cr) contaminated soil has negative effect on soil microbial community and ecological function. In this study, total sulfur (TS) inhibited the Chao 1, Shannon, Phylogenetic diversity (Pd) of bacterial and Pd of fungi in slightly contaminated soil by Cd and Cr around pyrite. TS, total potassium, pH, total chromium, total cadmium, total nitrogen, soil organic matter were the predominant factors for soil microbial community; the contribution of TS in shaping bacterial and fungal communities ranked at first and fifth, respectively. Compared with the low sulfur group, the abundance of sulfur sensitive microorganisms Gemmatimonas, Pseudolabrys, MND1, and Schizothecium were decreased by 68.79-97.22% (p < 0.01) at high sulfur one; the carbon fixation, nitrogen cycling, phosphorus cycling and resistance genes abundance were significantly lower (p < 0.01) at the latter. Such variations were strongly and closely correlated to the suppression of energy metabolism (M00009, M00011, M00086) and carbon fixation (M00173, M00376) functional module genes abundance in the high sulfur group. Collectively, high sulfur significantly suppressed the abundances of functional microorganisms and functional genes in slightly contaminated soil with Cd and Cr, possibly through inhibition of energy metabolism and carbon fixation of functional microorganisms. This study provided new insights into the environmental behavior of sulfur in slightly contaminated soil with Cd and Cr.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Cromo/toxicidade , Filogenia , Metabolismo Energético , Enxofre , Nitrogênio , Solo , Poluentes do Solo/toxicidade , Microbiologia do Solo
3.
Ecotoxicol Environ Saf ; 261: 115108, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285674

RESUMO

Wood vinegar (WV) is a renewable organic compound, possessing characteristics such as high oxygenated compound content and low negative impact on soil. Based on its weak acid properties and complexing ability to potentially toxic elements (PTEs), WV was used to leach Ni, Zn, and Cu contaminated soil in electroplating sites. In addition, the response surface methodology (RSM) based on the Box-Behnken design (BBD) was established to clarify the interaction between each single factor, and finally completed the risk assessment of the soil. The amounts of PTEs leached from the soil climbed with the increase of WV concentration, liquid-solid ratio, and leaching time, while they surged with the decrease of pH. Under optimal leaching circumstances (the concentration of WV= 100 %; washing time= 919 min; pH= 1.00), the removal rates of Ni, Zn, and Cu could reach 91.7 %, 57.8 %, and 65.0 %, respectively, and the WV-extracted PTEs were mainly from the Fe-Mn oxides fraction. After leaching, the Nemerow integrated pollution index (NIPI) decreased from an initial value of 7.08 (indicating severe pollution) to 0.450 (indicating no pollution). The potential ecological risk index (RI) dropped from 274 (medium level) to 39.1 (low level). Additionally, the potential carcinogenic risk (CR) values reduced by 93.9 % for both adults and children. The results revealed that the washing process significantly reduced the pollution level, potential ecological risk, and health risk. Coupled with FTIR and SEM-EDS analysis, the mechanism of WV removal of PTEs could be explained from three aspects: acid activation, H+ ion exchange, and functional group complexation. In summary, WV is an eco-friendly and high-efficiency leaching material for the remediation of PTEs polluted sites, which will maintain soil function and protect human health.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Metais Pesados/análise , Galvanoplastia , Poluentes do Solo/análise , Medição de Risco , Solo/química , Zinco/análise
4.
Sci Total Environ ; 877: 162812, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924951

RESUMO

Cadmium (Cd) can accumulate in agriculture soil from the regular application of phosphorus (P) fertilizer. Microbiological method is considered as a potentially effective strategy that can not only remediate the Cd-contaminated soil but also provide the phosphorus needed for crop growth. However, the toxicity of Cd may affect the activity of microorganisms. To solve this problem, Klebsiella variicola with excellent phosphate solubilization ability (155.30 mg L-1 at 48 h) and Cd adsorption rate (90.84 % with 10 mg L-1 Cd initial concentration) was firstly isolated and identified in this study. Then, a phosphoric acid and ball milling co-modified biochar (PBC) was selected as the carrier to promote the activities of K. variicola under Cd pollution. Surface characterization revealed that the promotion of K. variicola by PBC was mainly attributed to the large specific surface area and diverse functional groups. Compared to contaminated soil, microbial PBC (MPBC) significantly increased the pakchoi biomass and phosphorus (P) content, while the Cd content in leave and root of pakchoi (Brassica chinensis L.) decreased by 25.90-43.46 % (P < 0.05). The combined application also favored the transformation of the resistant P fractions to bioavailable P, and facilitated the immobilization of 20.12 % exchangeable Cd to reducible, oxidizable, and residual Cd in the treated soil. High-throughput sequencing revealed that the response of the soil microbial community to the MPBC was more beneficial than K. variicola or PBC alone. Therefore, the application of MPBC has the potential to act as an efficient, stable, and environmentally friendly sustainable product for Cd remediation and enhanced P bioavailability in agricultural production.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo , Fosfatos , Fósforo , Disponibilidade Biológica , Carvão Vegetal , Poluentes do Solo/análise
5.
Ecotoxicol Environ Saf ; 251: 114550, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652743

RESUMO

Potentially toxic element (PTE) pollution of urban soils has become the focus of social concern, but the differences of the sources, pollution levels and source-oriented human health risks (HHR) of PTE in urban soils among different urban intensity areas is rarely known. This study explored a comprehensive scheme that combined positive matrix factorization model and source-oriented assessment to quantitatively assess the priority pollution sources and HHR in urban soils from areas with different urbanization intensities. All the average values for PTE concentrations, except for Cr, were higher than their corresponding background values. The contributions made by the four sources (atmospheric deposition, agricultural activities, traffic activities, and natural sources) were relatively similar (22.29-29.89%) in the low urbanization intensity (LUI) area, whereas traffic activities and atmospheric deposition made the greatest contributions in the medium urbanization intensity (MUI) (29.12%) and the high urbanization intensity (HUI) (38.97%) areas, respectively. The geo-accumulation index results revealed that Cd was the most polluting element and the HUI area had the highest pollution levels. The content-oriented assessment of HHR demonstrated that the non-carcinogenic risks were acceptable, but the carcinogenic risks were unacceptable. According to the source-oriented HHR assessment, among the anthropogenic activities, atmospheric deposition contributed the most to carcinogenic risk of children in all areas, and atmospheric deposition, traffic activities and agricultural activities contributed the most to the carcinogenic risk of adults in HUI, MUI and LUI, respectively. This suggest that control measures need to be tailored to the appropriate urbanization intensity to effectively curb PTE pollution caused by anthropogenic activities.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Monitoramento Ambiental , Urbanização , Metais Pesados/análise , Poluentes do Solo/análise , Solo , Carcinógenos/análise , Medição de Risco , China
6.
Environ Sci Pollut Res Int ; 27(15): 18853-18865, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32207009

RESUMO

Siegesbeckia orientalis L. was identified as a novel Cd-hyperaccumulator and valuable phytoremediation material. However, the molecular mechanisms underlying Cd accumulation in S. orientalis are largely unknown. In this study, RNA-Seq analysis was performed to study the Cd-accumulating mechanisms in its roots with or without Cd treatment. The RNA-seq analysis generated 312 million pairs of clean reads and 78G sequencing data. De novo transcriptome assembly produced 355,070 transcripts with an average length of 823.59 bp and 194,207 unigenes with an average length of 605.68 bp. Comparative transcriptome analyses identified a large number of differentially expressed genes in roots under Cd stress, and functional annotation suggested that S. orientalis utilizes various biological pathways involving many gene networks working simultaneously to cope with the stress. This study revealed that four biological pathways were mainly involved in S. orientalis tolerance to Cd stress, including reactive oxygen species scavenging, phenylpropanoid biosynthesis pathway, Cd absorption and transport, and ABA signaling pathway. The genes related to photosynthesis and heavy metal transport are likely the potential candidates and could be further investigated to determine their roles in Cd tolerance in S. orientalis roots. These findings will be useful to understand the Cd accumulation mechanisms in S. orientalis and facilitate the study of phytoremediation at the molecular level in plants.


Assuntos
Cádmio , Perfilação da Expressão Gênica , Biodegradação Ambiental , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Transcriptoma
7.
Environ Pollut ; 261: 114117, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32062092

RESUMO

Whether toxicity of silver nanoparticles (AgNPs) to organisms originates from the nanoparticles themselves or from the dissolved Ag-ions is still debated, with the majority of studies claiming that extracellular release of Ag-ions is the main cause of toxicity. The objective of this study was to determine the contributions of both particles and dissolved ions to toxic responses, and to better understand the underlying mechanisms of toxicity. In addition, the pathways of AgNPs exposure to plants might play an important role and therefore are explicitly studied as well. We systematically assessed the phytotoxicity, internalization, biodistribution, and antioxidant responses in lettuce (Lactuca sativa) following root or foliar exposure to AgNPs and ionic Ag at various concentrations. For each endpoint the relative contribution of the particle-specific versus the ionic form was quantified. The results reveal particle-specific toxicity and uptake of AgNPs in lettuce as the relative contribution of particulate Ag accounted for more than 65% to the overall toxicity and the Ag accumulation in whole plant tissues. In addition, particle toxicity is shown to originate from the accumulation of Ag in plants by blocking nutrient transport, while ion toxicity is likely due to the induction of excess ROS production. Root exposure induced higher toxicity than foliar exposure at comparable exposure levels. Ag was found to be taken up and subsequently translocated from the exposed parts of plants to other portions regardless of the exposure pathway. These findings suggest particle related toxicity, and demonstrate that the accumulation and translocation of silver nanoparticles need to be considered in assessment of environmental risks and of food safety following consumption of plants exposed to AgNPs by humans.


Assuntos
Lactuca , Nanopartículas Metálicas , Antioxidantes , Humanos , Prata , Distribuição Tecidual
8.
Ecotoxicol Environ Saf ; 187: 109829, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31654869

RESUMO

Screening appropriate washing agents to remediate soils contaminated with heavy metals is crucial for decreasing metal hazards posing to environment and human health. In this study, two plant washing agents-water-extracted from Fagopyrum esculentum and Fordiophyton faberi, were applied to remove soil Pb, Zn, and Cd by washing. Results indicated that metal removals augmented with increase of washing solution concentrations, decreased with increasing pH values of the solution and followed the pseudo-second-order model depending on contact duration. At concentration of 50 g/L, pH 3 and contact duration of 120 min, F. esculentum had higher removals of Pb (5.98-6.83%), Zn (21.82-27.94%), and Cd (39.90-40.74%) than those of F. faberi. And metal ions could be removed by binding with carboxyl, hydroxyl, amide, amine and aromatic groups in washing solutions. The potential risks of residual metals declined by 51.35-52.12% for mine soil and 48.51-49.96% for farmland soil with exchangeable and carbonate-bound fractions obviously extracted after a single washing (P < 0.05). And soil organic carbon and nutrients increased to some extent except for total phosphorus and available potassium. Moreover, soil phytotoxicity lowered except that some adverse effects on seed germination existed. Therefore, the water extract from F. esculentum is a promising washing agent for heavy metal removal.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Extratos Vegetais/química , Poluentes do Solo/química , Cádmio/química , Fagopyrum/química , Humanos , Chumbo/química , Chumbo/isolamento & purificação , Myrtales/química , Zinco/química , Zinco/isolamento & purificação
9.
Environ Sci Pollut Res Int ; 26(19): 19261-19271, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31065988

RESUMO

Cadmium (Cd) contamination in agricultural soils is a prevalent environmental issue and poses potential threats to food security. Foliar ascorbic acid might prove a potent tool to alleviate toxicity of Cd toxicity in maize. An experiment was conducted with objectives to study exogenous ascorbic acid-modulated improvements in physiochemical attributes of maize under Cd toxicity. The experiment was conducted under completely randomized design. Treatments were comprised of varying concentrations of foliar ascorbic acid viz. 0.0, 0.1, 0.3, and 0.5 mM of AsA. Toxicity of Cd decreased the maize growth, increased lipid peroxidation, disturbed protein metabolism, and reduced the antioxidant defense capabilities compared with the control. However, foliar AsA significantly improved maize growth and development, photosynthetic capabilities, and protein concentrations in Cd-stressed maize plants. Meanwhile, the malondialdehyde contents and hydrogen peroxide accumulation levels in Cd-stressed maize plants decreased remarkably with increasing AsA concentrations. Furthermore, the combined treatments conspicuously boosted activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase under the Cd stress alone. In addition, the application of AsA reduced the Cd uptake by 10.3-12.3% in grains. Conclusively, foliar ascorbic acid alleviated the negative effects of Cd stress in maize and improved photosynthetic processes, osmolytes, and antioxidant defense systems.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Cádmio/metabolismo , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Distribuição Aleatória , Poluentes do Solo/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
10.
J Hazard Mater ; 366: 177-183, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30522084

RESUMO

Soil washing, which is used to remove heavy metals from soil, is dependent on suitable washing agents. However, there is still a lack of economical, environmentally friendly washing agents with high removal efficiency. In this study, three washing agents, carboxyalkylthiosuccinic acid (CETSA), copolymer of maleic and acrylic acid (MA/AA) and ethylenediamine tetra acetic acid (EDTA), were used to remove heavy metals from contaminated soil. The influence of washing solution concentration, pH and washing time on heavy metals removal was also investigated. The cadmium (Cd), lead (Pb), and zinc (Zn) removal efficiencies increased as washing solution concentrations increased from 0 to 60 g L-1, while they declined as pH increased from 3 to 8. Despite fluctuations between 90 and 120 min, heavy metal removal efficiencies increased continuously from 10 to 90 min. The three agents also effectively reduced the potential risks of Cd, Pb, and Zn in contaminated soil, but only CETSA and MA/AA produced no significant changes in chemical properties. Fourier transform infrared spectroscopy revealed that the hydroxyl, carboxyl, carbonyl, methoxyl, and sulfur groups were related to the heavy metal ions from the soil colloids. Thus, CETSA and MA/AA were suitable washing agents for remediation of heavy metals contaminated soil.

11.
Ecotoxicol Environ Saf ; 162: 464-473, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30015193

RESUMO

Soil washing with natural chelators to remediate metal-contaminated soils has been gained attention by researchers. However, the abilities of the chelators to remediate the multiple metal polluted soils are less effective. This study employed zero-valent iron nanoparticle (nZVI) to enhance the removal efficiencies of citric (CA), tartaric (TA) and oxalic acids (OA), and evaluate their feasibility. Results showed that metal removal efficiencies increased with the increasing concentration of nZVI and soil-liquid ratio, decreased with the increasing solution pH. The kinetic simulation indicated that pseudo-first-order and pseudo-second-order models could be used for describing the washing processes. Additionally, metal removals were significantly improved by addition of nZVI (p < 0.05). The highest enhancements of soil Cd, Pb and Zn removals under solution pH of 4.0, soil-liquid ratio of 1:20 and washing time of 120 min reached 12.83% (OA- nZVI), 24.92% (CA-nZVI) and 11.64% (OA- nZVI) for mine soil, and 19.24% (TA- nZVI), 18.16% (CA-nZVI) and 8.93% (OA- nZVI) for farmland soil, respectively. After soil washing, the exchangeable forms and the environmental risks of residual metals were markedly diminished in soils. Therefore, the combinations of the organic acids and nZVI are the feasible practices to repair the soils contaminated by heavy metals.


Assuntos
Ácidos/química , Cádmio/química , Quelantes/química , Poluição Ambiental/análise , Ferro/química , Chumbo/química , Zinco/química , Agricultura , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/química , Nanopartículas/química , Compostos Orgânicos/química , Ácido Oxálico/química , Solo/química , Poluentes do Solo/química , Tartaratos/química
12.
Chemosphere ; 117: 617-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461926

RESUMO

The Pb removal efficiencies from contaminated soils by low molecular weight organic acid (LMWOA) and nanoscale zero-valent iron (nZVI) were investigated through batch soil washing experiments. Results showed that significant promotion on Pb-removal with the mixed solutions of LMWOA and nZVI (p < 0.05). The Pb removal efficiencies reached 64% and 83% for mine and farmland soil by addition of 0.2 M citric acid and 2.0 g L−1 nZVI, respectively. They decreased with increasing pH from 3 to 9. The mixed solutions of LMWOA and nZVI induced Pb(II) releases processes including a rapid desorption within 4 h and a slow desorption in the following hours. The second-order model was the most appropriate for describing the kinetic processes of Pb(II) desorption. The main fractions of Pb removal were exchangeable and reducible. Compared with LMWOA, the loss rates of nitrogen, phosphorus and potassium decreased after washing with the mixed solutions. Our study suggests that combining of LMWOA and nZVI would be a promising alternative approach for remediation Pb-contaminated soils.


Assuntos
Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Ferro/metabolismo , Chumbo/metabolismo , Nanopartículas Metálicas/química , Poluentes do Solo/metabolismo , Ácidos/metabolismo , Peso Molecular , Compostos Orgânicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA