Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(48): 17798-17807, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976298

RESUMO

The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo , Zimosan , Peroxidase do Rábano Silvestre/metabolismo , Oxirredução
2.
Neoplasia ; 27: 100783, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334277

RESUMO

Colorectal cancer (CRC) is the second deadly and the third most common malignancy worldwide. It has been projected that annual new cases of CRC will increase by 63% in 2040, constituting an even greater health challenge for decades to come. This study has linked DEC1 (differentiated embryonic chondrocyte expressed gene 1) to the pathogenesis of CRC. Based on the analysis of patient samples and database data, DEC1 is expressed much higher in CRC than the adjacent normal tissues. CRC patients with higher DEC1 expression have a shorter survival time. The carcinogenesis protocol with azoxymethane/dextran sulfate induces a higher number of tumors with larger sizes in DEC1+/+ than DEC1-/- mice. Overexpression of DEC1 increases the expression of proliferation- and antiapoptosis-related genes, but decreases the level of proapoptotic genes. Mechanistically, this study has shown that DEC1 is functionally looped to the IL-6/STAT3 signaling pathway (interleukin-6/signal transducer and activator of transcription 3). IL-6 induces DEC1, and DEC1 enhances the phosphorylation of STAT3, resulting in increased pSTAT3/STAT3 ratio. DEC1 and STAT3 are present in reciprocal immunocomplexes, pointing to physical interactions (presumably with pSTAT3). These findings establish that DEC1 is a CRC enhancer. The enhancement is achieved largely through the IL-6/STAT3 pathway. The potential of the physical interaction between DEC1 and STAT3 will likely serve as a foundation to develop intervention strategies for CRC prevention and therapy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Colorretais , Proteínas de Homeodomínio , Interleucina-6 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese , Condrócitos/metabolismo , Condrócitos/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
3.
ACS Appl Mater Interfaces ; 12(49): 54387-54398, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236873

RESUMO

In situ glyco-editing on the cell surface can endow cellular glycoforms with new structures and properties; however, the lack of cell specificity and dependence on cells' endogenous functions plague the revelation of cellular glycan recognition properties and hamper the application of glyco-editing in complicated authentic biosystems. Herein, we develop a thermally triggered, cell-specific glyco-editing method for regulation of lectin recognition on target live cells in both single- and cocultured settings. The method relies on the aptamer-mediated anchoring of microgel-encapsulated neuraminidase on target cells and subsequent thermally triggered enzyme release for localized sialic acid (Sia) trimming. This temperature-based enzyme accessibility modulation strategy exempts genetic or metabolic engineering operations and, thus for the first time, enables tumor-specific desialylation on complicated tissue slices. The proposed method also provides an unprecedented opportunity to potentiate the innate immune response of natural killer cells toward target tumor cells through thermally triggered cell-specific desialylation, which paves the way for in vivo glycoimmune-checkpoint-targeted cancer therapeutic intervention.


Assuntos
Materiais Biocompatíveis/metabolismo , Imunidade Celular , Lectinas/metabolismo , Neuraminidase/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Géis/química , Humanos , Células Matadoras Naturais/imunologia , Lectinas/química , Camundongos , Camundongos Nus , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/química , Tamanho da Partícula , Ligação Proteica , Temperatura , Transplante Heterólogo
4.
Anal Chem ; 92(10): 7232-7239, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32297503

RESUMO

Lipid rafts, highly ordered cell membrane domains mainly composed of cholesterol, sphingolipids, and protein receptors, serve as important functional platforms for regulation of lipid/protein interactions. The major predicament in lipid raft study is the lack of direct and robust visualization tools for in situ tracking raft components. To solve this issue, we herein report a proximity enzymatic glyco-remodeling strategy for direct and highly efficient lipid raft labeling and imaging on live cells. Through cofunctionalization of raft-specific recognition motif and glycan-remodeling enzyme on gold nanoparticles, the fabricated nanoprobe can be specifically guided to the raft domains to perform catalytic remodeling on neighboring glycans. Taking advantage of the abundant glycoconjugates enriched in lipid rafts, this elaborate design achieves the translation of one raft-recognition event to multiple raft-confined labeling operations, thus, significantly increasing the labeling efficiency and imaging sensitivity. The direct covalent labeling also enables in situ and long-term tracking of raft components in live cells. The method possesses broad applicability and potential expansibility, thus, will greatly facilitate the investigations on the complex composition, organization, and dynamics of lipid rafts.


Assuntos
Toxina da Cólera/metabolismo , Galactose Oxidase/metabolismo , Lipídeos/análise , Polissacarídeos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Toxina da Cólera/química , Galactose Oxidase/química , Ouro/química , Ouro/metabolismo , Humanos , Nanopartículas Metálicas/química , Polissacarídeos/química , Células Tumorais Cultivadas
5.
Anal Chem ; 91(9): 6027-6034, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993977

RESUMO

The imaging characterization of spatial proximity of covalently linked structural motifs (e.g., protein-specific glycoform) is essential for thorough understanding of cellular chemistry and biology. The current imaging formats rely on gating-based mechanisms for generating correct closed-loop signaling topology, and they can suffer from low signal intensity, restricted applicability, and complicated design. We report herein the development of a mechanistically distinct filter beacon architecture for protein-specific glycoform imaging on the cell surface. The elaborate structuring of molecular beacon segment, nicking restriction site, and docking moiety lays out a general nongated design principle for passing through intended closed-loop signaling topology and sifting out false-positive open-loop leakage topology, furnishing a straightforward imaging format with high signal intensity and broad applicability. Proof-of-concept protocols have been developed for the imaging of MUC1-bound terminal sialic acid and fucose. The versatile adaptability of the protocols also enables dynamic monitoring of protein-specific glycosylation pattern changes in response to the alteration of cellular physiological states. Given the convenience for achieving multiplexed encoding and decoding, through fluorescence signals alone or together with filter beacon sequences, the filter beacon architecture should permit comprehensive imaging of diverse-structured carbohydrates on a given glycoprotein.


Assuntos
Mucina-1/química , Fucose/análise , Glicosilação , Células Hep G2 , Humanos , Ácido N-Acetilneuramínico/análise , Conformação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA