Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Aging (Albany NY) ; 16(1): 89-105, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38206646

RESUMO

Widely recognized as an essential epitranscriptomic modification, RNA N6-methyladenosine (m6A) is involved in both physiological and pathological processes. Here, we want to investigate m6A modification's potential roles in gastric cancer. Gastric cancer samples were selected from TCGA-STAD and GEO (GSE84426, GSE84433) datasets. Based on 18 regulators of m6A, m6A modification patterns were thoroughly evaluated in gastric cancer samples. Principal component analysis algorithms were used to construct the m6Ascore, using which, m6A modification features in tumor somatic mutations and immune checkpoint blockade therapy were analyzed. 34 gastric cancer samples were collected to verify the effectiveness of the m6Ascore. Here, we determined three different m6A modification patterns. m6Acluster-C modification pattern presented immune activation-associated enrichment pathways and have significant survival advantages. Then, in gastric cancer, m6Ascore could act as an independent prognostic biomarker. A significant survival benefit was exhibited in patients with high m6Ascore. Moreover, the modification signature of m6A uncovered in this study would help to predict immune checkpoint blockade therapy's responses. In conclusion, our discoveries all pointed to the fact that modification patterns of m6A were linked to the TME. Moreover, evaluation of individual tumor's m6A modification pattern will help to guide immunotherapy strategies that shows more therapeutic effects.


Assuntos
Adenina/análogos & derivados , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Inibidores de Checkpoint Imunológico , RNA , Metilação , Microambiente Tumoral
2.
Am J Cancer Res ; 13(2): 602-622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895988

RESUMO

Gastric cancer is one of the most common malignancies of the digestive system with high mortality rates. Recent studies have demonstrated that circRNAs are novel noncoding RNAs that play vital roles in the tumorigenesis and development of gastric cancer. Our study found a novel circRNA, namely, hsa_circ_0107595 (also called circABCA5), that is overexpressed in gastric cancer based on circRNA sequencing. qPCR demonstrated its overexpression in gastric cancer specimens. The overexpression or knockdown of circABCA5 in gastric cancer cell lines was achieved by lentiviral-mediated transfection. All MTS, EdU, Transwell and migration assays and xenograft experiments demonstrated that circABCA5 could promote gastric cancer proliferation, invasion, and migration in vitro and in vivo. Mechanistically, both RIP and RNA pulldown assays confirmed that circABCA5 could bind to the SPI1 protein, upregulate SPI1 expression, and promote its nuclear translocation. SPI1 could further promote the malignant phenotype of gastric cancer by activating IL6/JAK2/STAT3 signaling. In addition, EIF4A3 could directly bind to circABCA5, promoting its stability and expression. Our study reveals that circABCA5 plays a vital role in the diagnosis and prognosis of gastric cancer and may even be developed as a molecular target for the treatment of gastric cancer.

3.
Cell Biosci ; 11(1): 177, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583752

RESUMO

BACKGROUND: Although recent molecular analyses have improved our knowledge regarding gastric cancer (GC) biology, the molecular mechanisms that confer metastatic potential to GC remain poorly understood. In this study, we intend to explore the function and characterize the underlying mechanism of long noncoding RNA RNF144A-AS1 in GC metastasis and outgrowth. METHODS: The expression of RNF144A-AS1, miR-30c-2-3p, and Lysyl oxidase (LOX) was detected by quantitative real-time PCR assay. Fluorescence in situ hybridization and subcellular fractionation assay determined the cellular localization of RNF144A-AS1. Cell counting kit 8 assay, transwell assay, and tube formation assay were performed to detect the effect on cell proliferation, migration, invasion, and angiogenesis, respectively. Animal models were also applied to verify the effect on tumor metastasis, outgrowth, and angiogenesis. Bioinformatic analysis, luciferase reporter assay, and RNA immunoprecipitation (RIP) assay explored the interactions among RNF144A-AS1, miR-30c-2-3p, and LOX. Gene regulation was further validated by knockdown of Dicer or mutating the miRNA binding sites on RNF144A-AS1 and LOX 3'UTR. Cells were treated with recombinant human TGF-ß1 (Transforming Growth Factor ß1) to explore the effect of TGF-ß1 on RNF144A-AS1. Western blot and immunohistochemistry were used to detect protein expression. RESULTS: The expression of RNF144A-AS1 was significantly upregulated in GC tissues and was associated with poor prognosis and later-stage diseases. Hypoxia stimulated the expression of RNF144A-AS1 in a HIF-1α-independent manner. Additionally, RNF144A-AS1 was also induced by TGF-ß1. Loss and gain of function assays revealed that RNF144A-AS1 promoted tumor metastasis, angiogenesis, and proliferation. Mechanism exploration indicated RNF144A-AS1 served as a microRNA decoy of miR-30c-2-3p to release LOX. Gene Set Enrichment Analysis further suggested LOX and RNF144A-AS1 were enriched in the same gene sets, emphasizing the internal mechanism connection between these two genes. CONCLUSIONS: TGF-ß1- and hypoxia-inducible RNF144A-AS1 promoted tumor metastasis, angiogenesis, and proliferation through targeting the miR-30c-2-3p/LOX axis in GC, highlighting the value of the RNF144A-AS1/miR-30c-2-3p/LOX axis in therapeutic interventions of GC.

4.
Nat Commun ; 12(1): 2863, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001904

RESUMO

During injury, monocytes are recruited from the circulation to inflamed tissues and differentiate locally into mature macrophages, with prior reports showing that cavity macrophages of the peritoneum and pericardium invade deeply into the respective organs to promote repair. Here we report a dual recombinase-mediated genetic system designed to trace cavity macrophages in vivo by intersectional detection of two characteristic markers. Lineage tracing with this method shows accumulation of cavity macrophages during lung and liver injury on the surface of visceral organs without penetration into the parenchyma. Additional data suggest that these peritoneal or pleural cavity macrophages do not contribute to tissue repair and regeneration. Our in vivo genetic targeting approach thus provides a reliable method to identify and characterize cavity macrophages during their development and in tissue repair and regeneration, and distinguishes these cells from other lineages.


Assuntos
Fígado/fisiopatologia , Lesão Pulmonar/fisiopatologia , Macrófagos/fisiologia , Monócitos/fisiologia , Cavidade Peritoneal/fisiologia , Cavidade Pleural/fisiologia , Animais , Linhagem da Célula/genética , Células Cultivadas , Fígado/lesões , Ativação de Macrófagos/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Monócitos/citologia , Monócitos/metabolismo , Cavidade Peritoneal/citologia , Fagocitose/fisiologia , Cavidade Pleural/citologia
5.
J Exp Clin Cancer Res ; 40(1): 6, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33397440

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignant tumors worldwide. Currently, the overall survival rate of GC is still unsatisfactory despite progress in diagnosis and treatment. Therefore, studying the molecular mechanisms involved in GC is vital for diagnosis and treatment. CircRNAs, a type of noncoding RNA, have been proven to act as miRNA sponges that can widely regulate various cancers. By this mechanism, circRNA can regulate tumors at the genetic level by releasing miRNA from inhibiting its target genes. The WNT2/ß-Catenin regulatory pathway is one of the canonical signaling pathways in tumors. It can not only promote the development of tumors but also provide energy for tumor growth through cell metabolism (such as glutamine metabolism). METHODS: Through RNA sequencing, we found that hsa_circ_0008259 (circLMO7) was highly expressed in GC tissues. After verifying the circular characteristics of circLMO7, we determined the downstream miRNA (miR-30a-3p) of circLMO7 by RNA pull-down and luciferase reporter assays. We verified the effect of circLMO7 and miR-30a-3p on GC cells through a series of functional experiments, including colony formation, 5-ethynyl-2'-deoxyuridine and Transwell assays. Through Western blot and immunofluorescence analyses, we found that WNT2 was the downstream target gene of miR-30a-3p and further confirmed that the circLMO7-miR-30a-3p-WNT2 axis could promote the development of GC. In addition, measurement of related metabolites confirmed that this axis could also provide energy for the growth of GC cells through glutamine metabolism. We found that circLMO7 could promote the growth and metastasis of GC in vivo by the establishment of nude mouse models. Finally, we also demonstrated that HNRNPL could bind to the flanking introns of the circLMO7 exons to promote circLMO7 cyclization. RESULTS: CircLMO7 acted as a miR-30a-3p sponge affecting the WNT2/ß-Catenin pathway to promote the proliferation, migration and invasion of GC cells. Moreover, animal results also showed that circLMO7 could promote GC growth and metastasis in vivo. CircLMO7 could also affect the glutamine metabolism of GC cells through the WNT2/ß-Catenin pathway to promote its malignant biological function. In addition, we proved that HNRNPL could promote the self-cyclization of circLMO7. CONCLUSIONS: CircLMO7 promotes the development of GC by releasing the inhibitory effect of miR-30a-3p on its target gene WNT2.


Assuntos
RNA Circular/metabolismo , Neoplasias Gástricas/genética , Proteína Wnt2/metabolismo , beta Catenina/metabolismo , Animais , Progressão da Doença , Humanos , Camundongos , MicroRNAs , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
6.
Dig Dis Sci ; 66(2): 460-473, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32239379

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most commonly diagnosed malignancy worldwide. DLX6 antisense RNA 1 (DLX6-AS1) is a long noncoding RNA (lncRNA) that exhibits oncogenic effects on multiple human carcinomas. AIMS: This study aimed to investigate the regulatory effect of DLX6-AS1 in GC progression. METHODS: The expression of DLX6-AS1 in GC tissues and cell lines was examined. The cell viability, number of clones, and apoptosis, aerobic glycolysis, and mitochondrial respiration was assessed. The effect of DLX6-AS1 on tumor growth in nude mice was also evaluated. RESULTS: DLX6-AS1 was overexpressed in GC tissues and cell lines. DLX6-AS1 knockdown by short hairpin RNA (shRNA) significantly inhibited cell viability and colony formation, and induced apoptosis. DLX6-AS1 silencing impaired aerobic glycolysis but stimulated mitochondrial respiration in GC cells. miR-4290 was confirmed as a downstream target of DLX6-AS1, and their expression levels were inversely correlated. GC cells expressing sh-DLX6-AS1 showed significantly lower level of 3-phosphoinositide-dependent protein kinase 1 (PDK1), a target of miR-4290, compared to cells expressing control shRNA. In addition, the suppressed GC cell malignancy upon DLX6-AS1 knockdown could be prominently reversed by PDK1 overexpression. Meanwhile, PDK1 overexpression enhanced aerobic glycolysis but repressed mitochondrial respiration under sh-DLX6-AS1 treatment. Furthermore, DLX6-AS1 knockdown significantly delayed the tumor growth in a mouse xenograft model inoculated with GC cells. CONCLUSIONS: LncRNA DLX6-AS1 regulated tumor growth and aerobic glycolysis in GC by targeting miR-4290 and PDK1, suggesting DLX6-AS1 might serve as a novel potential therapeutic target for GC treatment from bench to clinic.


Assuntos
Proliferação de Células/fisiologia , Glucose/metabolismo , Proteínas de Homeodomínio/biossíntese , MicroRNAs/metabolismo , RNA Antissenso/biossíntese , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
J Gastroenterol ; 56(2): 125-138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33155080

RESUMO

BACKGROUND: Circular RNAs (circRNAs) act as vital regulators of gene expression in a variety of cancers. However, the role of circRNAs in gastric cancer (GC) remains largely unexplored. Herein, we identified that circTMEM87A sponges miR-142-5p to promote GC progression through up-regulating ULK1 expression. METHODS: The expression of circTMEM87A in GC was determined by RNA sequencing and quantitative real-time PCR (qRT-PCR). The effects of knockdown or exogenous expression of circTMEM87A on GC cell phenotypes were evaluated both in vitro and in vivo. The interacting miRNA of circTMEM87A was predicted by bioinformatics and confirmed by RNA pull-down, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The mechanism by which circTMEM87A/miR-142-5p/ULK1 axis promotes GC was determined by western blot, GFP/mRFP-LC3 puncta analysis, transmission electron microscope (TEM). RESULTS: CircTMEM87A was dramatically elevated in GC tissues and cell lines, and high circTMEM87A expression was closely correlated with poor prognosis of GC patients. Knockdown of circTMEM87A suppressed cell growth, migration, invasion and induced apoptosis in vitro, as well as inhibited GC tumorigenicity and lung metastasis potential in vivo. Meanwhile, circTMEM87A overexpression had the opposite effects. Furthermore, we demonstrated that circTMEM87A could act as a sponge of miR-142-5p to regulate ULK1 expression and GC progression. CONCLUSIONS: Our findings suggest that circTMEM87A functions as an oncogene through the miR-142-5p/ULK1 axis in GC. CircTMEM87A might be a prognostic biomarker as well as a promising therapeutic target for GC.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , RNA Circular/farmacologia , Neoplasias Gástricas/etiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/análise , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/análise , MicroRNAs/genética , RNA Circular/uso terapêutico , Neoplasias Gástricas/fisiopatologia
8.
J Exp Clin Cancer Res ; 39(1): 246, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33198772

RESUMO

BACKGROUND: Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. METHODS: RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). RESULTS: CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. CONCLUSIONS: CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


Assuntos
Cisplatino/farmacologia , Proteínas de Membrana/genética , MicroRNAs/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , RNA Circular/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Transfecção
9.
Scand J Gastroenterol ; 55(6): 687-693, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32449434

RESUMO

Objectives: The PHD Finger Protein 19 (PHF19), as a sub-component of polycomb repressive complex 2 (PRC2), has been identified to be associated with various biological processes. Aberrant expression of PHF19 has implicated in several cancer types. This study aims to investigate its function and clinical significance in gastric cancer for the first time.Methods: The expression of PHF19 was evaluated by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. PHF19 was silenced by small interference RNAs and lentiviral particles in gastric cancer cells. Then cell growth was measured by CCK-8 assays, colony formation and in a mouse model. Transwell and wound healing assays were performed to detect cell migration. Western blot analysis was used to explore the downstream signaling factors in PHF19-silenced cells, xenograft tumors and gastric cancer samples.Results: PHF19 was frequently upregulated in gastric cancer tissues compared with adjacent normal stomach tissues and this upregulation was correlated with tumor cell differentiation and poor outcome of gastric cancer patients. Functionally, the silencing of PHF19 in gastric cancer cells led to decreased cell growth and migration. Stable knockdown of PHF19 inhibited the tumorigenicity of gastric cancer cells in nude mice model. Western blot results demonstrated that phosphorylated AKT and ERK were reduced upon PHF19 downregulation, implying the two signaling pathways possibly mediate the oncogenic roles of PHF19.Conclusions: We identified PHF19 as an oncogene candidate and provided a new potential drug target for gastric cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Braz J Med Biol Res ; 53(5): e9330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32321153

RESUMO

The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glicólise/genética , MicroRNAs/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
11.
Onco Targets Ther ; 13: 371-379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021282

RESUMO

BACKGROUND AND OBJECTIVES: RING finger protein 38 (RNF38) has been reported to be involved in the tumorigenesis of several tumors, but its role in colorectal cancer (CRC) is still not investigated. In the present study, we aimed to investigate the effect of RNF38 in CRC cells. MATERIALS AND METHODS: The public tumor databases GEPIA and Kaplan-Meier Plotter were used to analyze RNF38 expression and patients' overall survival in CRC. The qRT-PCR was carried out to assess the mRNA levels of RNF38 and LDB1. Western blot and co-immunoprecipitation were used to detect protein expression and ubiquitination. CCK-8 assay was performed to analyze CRC cell growth and viability. RESULTS: RNF38 was found downregulated in CRC tumor tissues and cell lines, and CRC patients with high RNF38 expression had a longer overall survival than patients with low RNF38 expression. Our further investigations showed that RNF38 interacted with LDB1, and downregulated LDB1 expression by inducing its polyubiquitination. Moreover, overexpression of RNF38 inhibited CRC cell growth but enforced LDB1 could significantly antagonize RNF38-induced cell growth inhibition in CRC cells. Additionally, RNF38/LDB1 axis was involved in the drug sensitivity of 5-FU to CRC cells. CONCLUSION: Our studies suggested that RNF38 was functional in CRC cells, and downregulated CRC cell growth by inducing LDB1 polyubiquitination, which indicated that RNF38 could be as a novel target for CRC therapy.

12.
Hum Cell ; 33(2): 377-385, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31919718

RESUMO

Gastric cancer (GC) is one of the most common malignancies worldwide. The prognosis of GC is unsatisfied owning to widespread metastasis. P21-activated kinase 1 (PAK1), a member of serine/threonine kinases, is associated with the progression of multiple types of human cancers. Here, we demonstrated that CDK4/6 inhibitor reduced GC cell viability and decreased PAK1 expression. Consistently, PAK1 ablation increased GC cell sensitivity exposed to CDK4/6 inhibitor and promoted DNA damage. We also revealed PAK1 depletion notably affected PDK1-AKT pathway, and PDK1 overexpression totally abrogated the effect of PAK1 deletion on DNA damage in GC cells. Additionally, PDK1 overexpression also rescued the increased GC cell sensitivity towards CDK4/6 inhibitor and the cell cycle arrest caused by PAK1 depletion. Our findings, therefore, suggested that PAK1 silencing increased sensitivity to CDK4/6 inhibition in gastric cancer cells via PDK1-AKT pathway. We, therefore, thought PAK1 as a promising therapeutic target for the treatment of CDK4/6 inhibitor-resistant gastric cancer.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/fisiologia , Linhagem Celular Tumoral , Humanos
13.
Braz. j. med. biol. res ; 53(5): e9330, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1098112

RESUMO

The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.


Assuntos
Humanos , Neoplasias Gástricas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Glicólise/genética , Transfecção , Regulação Neoplásica da Expressão Gênica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Citometria de Fluxo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética
14.
Mol Cancer ; 18(1): 20, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717751

RESUMO

BACKGROUND: CircRNA has emerged as a new non-coding RNA that plays crucial roles in tumour initiation and development. 'MiRNA sponge' is the most reported role played by circRNAs in many tumours. The AKT/mTOR axis is a classic signalling pathway in cancers that sustains energy homeostasis through energy production activities, such as the Warburg effect, and blocks catabolic activities, such as autophagy. Additionally, the AKT/mTOR axis exerts a positive effect on EMT, which promotes tumour metastasis. METHODS: We detected higher circNRIP1 expression in gastric cancer by performing RNA-seq analysis. We verified the tumour promotor role of circNRIP1 in gastric cancer cells through a series of biological function assays. We then used a pull-down assay and dual-luciferase reporter assay to identify the downstream miR-149-5p of circNRIP1. Western blot analysis and immunofluorescence assays were performed to demonstrate that the circNRIP1-miR-149-5p-AKT1/mTOR axis is responsible for the altered metabolism in GC cells and promotes GC development. We then adopted a co-culture system to trace circNRIP1 transmission via exosomal communication and RIP experiments to determine that quaking regulates circNRIP1 expression. Finally, we confirmed the tumour suppressor role of microRNA-133a-3p in vivo in PDX mouse models. RESULTS: We discovered that knockdown of circNRIP1 successfully blocked proliferation, migration, invasion and the expression level of AKT1 in GC cells. MiR-149-5p inhibition phenocopied the overexpression of circNRIP1 in GC cells, and overexpression of miR-149-5p blocked the malignant behaviours of circNRIP1. Moreover, it was proven that circNRIP1 can be transmitted by exosomal communication between GC cells, and exosomal circNRIP1 promoted tumour metastasis in vivo. We also demonstrated that quaking can promote circNRIP1 transcription. In the final step, the tumour promotor role of circNRIP1 was verified in PDX models. CONCLUSIONS: We proved that circNRIP1 sponges miR-149-5p to affect the expression level of AKT1 and eventually acts as a tumour promotor in GC.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA/genética , Neoplasias Gástricas/genética , Serina-Treonina Quinases TOR/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Exossomos/metabolismo , Exossomos/patologia , Feminino , Xenoenxertos , Humanos , Metástase Linfática , Masculino , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/antagonistas & inibidores , RNA/metabolismo , RNA Circular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
15.
Onco Targets Ther ; 11: 6579-6587, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323630

RESUMO

BACKGROUND AND OBJECTIVE: RNF6, an E3 ligase, has been reported to play an important role in the tumorigenesis in several tissues, but its role in gastric cancer is still unknown. In this study, we aimed to investigate the biological function and molecular mechanisms of RNF6 in gastric cancer. MATERIALS AND METHODS: The expression levels of RNF6 were detected by quantitative real-time PCR (qRT-PCR) and immunoblotting in gastric cancer tissues and cell lines. Cell Counting Kit-8 assay was performed to evaluate cell proliferation. Cell apoptosis was analyzed by flow cytometer and immunoblotting. Luciferase assay, immunoblotting and qRT-PCR were performed to explore the activation of STAT3. Immunoprecipitation was performed to evaluate the ubiquitination of SHP-1. RESULTS: In this study, RNF6 was found to be upregulated in both primary tissues and cell lines of gastric cancer. Knockdown or overexpression of RNF6 inhibited or promoted cell growth of gastric cancer cells. Knockdown of RNF6 also induced the cleavage of PARP and promoted cell apoptosis in gastric cancer cells. In addition, knockdown of RNF6 also increased the cytotoxicity of doxorubicin against gastric cancer. Moreover, knockdown of RNF6 inhibited STAT3-derived luciferase activity and downregulated the phosphorylation of STAT3, but upregulated the protein level of SHP-1. Knockdown of RNF6 downregulated the expression of MCL1 and XIAP, which are target genes of STAT3. Further studies showed that RNF6 regulated the stability of SHP-1 by inducing its polyubiquitination. CONCLUSION: These results demonstrated that RNF6 was highly expressed in gastric cancer and regulated the growth of gastric cancer cells by affecting SHP-1/STAT3 signaling, which suggested that RNF6 could be a novel target for gastric cancer therapy.

16.
Gene ; 670: 130-135, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29802999

RESUMO

PI3K/Akt/mTOR pathway is involved in tumor initiation and progression, including gastric cancer (GC). However, the single nucleotide polymorphisms (SNPs) in this pathway and underlying molecular mechanism remain largely unexplored. A case-control study of 1275 GC patients and 1436 controls was performed to explore the associations of potentially functional SNPs in PI3K/Akt/mTOR pathway genes with the risk of GC. In the logistic regression analyses, one SNP rs7536272 out of the four candidate SNPs showed a significant association with GC risk (additive model: OR = 1.16, 95% CI = 1.03-1.30; co-dominant model: AG vs. AA, OR = 1.30, 95% CI = 1.11-1.53; dominant model: AG/GG vs. AA, OR = 1.28, 95% CI = 1.10-1.49).The luciferase assay indicated that rs7536272 G allele significantly enhanced the transcriptional activity, compared with A allele. Further expression quantitative trait loci (eQTL) analysis showed that GC patients with rs7536272 AG/GG genotypes had remarkably higher PIK3R3 levels than those with AA genotype, suggesting that rs7536272 polymorphism influenced the expression of PIK3R3. Additionally, we observed that GC patients with high expression of PIK3R3 had significant poorer outcome than those with low expression (HR = 1.29, 95% CI = 1.09-1.53). Our result demonstrated that SNP rs7536272, a functional risk variant located in the promoter region of PIK3R3, showed association with increased transcriptional activity and upregulation of PIK3R3 expression, thus involved in GC development.


Assuntos
Fosfatidilinositol 3-Quinases/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genética , Regulação para Cima , Idoso , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Locos de Características Quantitativas , Transdução de Sinais , Análise de Sobrevida , Serina-Treonina Quinases TOR/genética
17.
Mol Cell Biochem ; 440(1-2): 33-42, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28871449

RESUMO

Dbl-family guanine nucleotide exchange factors (GEFs) can activate RhoGTPases by facilitating the exchange of GDP for GTP, the aberrant expression of which has been implicated in tumorigenicity and metastasis of human cancers. ARHGEF39, as a member of Dbl-family GEFs, was reported to be a potential oncogene in human hepatocellular carcinoma previously. However, the role of ARHGEF39 in gastric cancer (GC) remains unclear so far. In the current study, we demonstrated that ARHGEF39 expression was significantly upregulated in GC tissues compared with paired adjacent normal tissues by quantitative real-time PCR analysis. Functional analyses revealed that ARHGEF39 overexpression could promote proliferation, colony formation, and migration of GC cells in vitro, whereas ARHGEF39 knockdown markedly suppressed these phenotypes. Moreover, ARHGEF39 enhanced tumorigenicity and lung metastasis potential of GC cells in nude mice model. Mechanistically, we found that overexpressed ARHGEF39 significantly increased the phosphorylation level of Akt (p-Akt), and its effect on cell proliferation was attenuated by PI3K inhibitor LY294002. Thus, our findings suggest that ARHGEF39 may contribute to cell proliferation and migration in GC via a possible mechanism involving Akt signaling.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/biossíntese , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Neoplasias Gástricas/patologia
18.
Oncotarget ; 7(18): 25470-7, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27027436

RESUMO

OBJECTIVE: The long non-coding RNA (lncRNA) gene, H19, has been involving in multiple biological functions, which also plays a vital role in colorectal cancer carcinogenesis. However, the association between genetic variants in H19 and colorectal cancer susceptibility has not been reported. In this study, we aim to explore whether H19 polymorphisms are related to the susceptibility of colorectal cancer. METHODS: We conducted a case-control study to evaluate the association between four selected single nucleotide polymorphisms (SNPs) (rs2839698, rs3024270, rs217727, and rs2735971) in H19 and the risk of colorectal cancer in a Chinese population. RESULTS: We found that individuals with rs2839698 A allele had a significantly increased risk of colorectal cancer, compared to those carrying G allele [odds ratio (OR) = 1.20, 95% confidence interval (CI) = 1.05-1.36 in additive model]. Further stratified analyses revealed that colon tumor site, well differentiated grade and Duke's stage of C/D were significantly associated with colorectal cancer risk (P < 0.05). Additionally, bioinformatic analysis showed that rs2839698 may change the crucial folding structures and alter the target microRNAs of H19. CONCLUSIONS: Our results provided the evidence that rs2839698 in H19 was associated with elevated risk of colorectal cancer, which may be a potential biomarker for predicting colorectal cancer susceptibility.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Genótipo , História do Século XVII , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
19.
J Biomed Res ; 29(2): 132-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25859268

RESUMO

Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells, The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole, as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation. The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression. Were observed taken together, these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

20.
J Gastroenterol ; 49(6): 1011-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23800944

RESUMO

BACKGROUND: Aquaporin-3 (AQP3) is a water transporting protein which plays an oncogenic role in several malignant tumors. However, its regulatory mechanism remains elusive to date. In this study, we investigated the microRNA-mediated gene repression mechanism involved in AQP3's role. METHODS: The potential microRNAs targeting AQP3 were searched via bioinformatic methods and identified by luciferase reporter assays, microRNA RT-PCR and western blotting. The expression patterns of miR-874 and AQP3 in human gastric cancer (GC) specimens and cell lines were determined by microRNA RT-PCR and western blotting. 5-ethynyl-2'-deoxyuridine, cell migration and invasion assays and tumorigenicity in vivo were adopted to observe the effects of miR-874 depletion or ectopic miR-874 expression on GC cell phenotypes. Cell apoptosis was evaluated by FACS and TUNEL in vitro and in vivo respectively. RESULTS: miR-874 suppressed AQP3 expression by binding to the 3'UTR of AQP3 mRNA in GC cells. miR-874 was significantly down-regulated and reversely correlated with AQP3 protein levels in clinical samples. Analysis of the clinicopathological significance showed that miR-874 and AQP3 were closely correlated with GC characteristics. Functional analyses indicated that ectopic miR-874 expression suppressed the growth, migration, invasion and tumorigenicity of GC cells, whereas miR-874 knockdown promoted these phenotypes. Down-regulation of Bcl-2, MT1-MMP, MMP-2 and MMP-9 and upregulation of caspase-3 activity and Bax were involved in miR-874 inducing cell apoptosis, and inhibiting migration and invasion. CONCLUSIONS: These results provide a mechanism by which AQP3 is upregulated, as well as highlight the importance of miR-874 in gastric cancer development and progression.


Assuntos
Aquaporina 3/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/fisiologia , Invasividade Neoplásica/genética , Neoplasias Gástricas/genética , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , China , Desoxiuridina/análogos & derivados , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA