Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(26): e2401394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715382

RESUMO

Currently, the typical combination therapy of programmed death ligand-1 (PD-L1) antibodies with radiotherapy (RT) still exhibits impaired immunogenic antitumor response in clinical due to lessened DNA damage and acquired immune tolerance via the upregulation of some other immune checkpoint inhibitors. Apart from this, such combination therapy may raise the occurrence rate of radiation-induced lung fibrosis (RIPF) due to enhanced systemic inflammation, leading to the ultimate death of cancer patients (average survival time of about 3 years). Therefore, it is newly revealed that mitochondria energy metabolism regulation can be used as a novel effective PD-L1 and transforming growth factor-ß (TGF-ß) dual-downregulation method. Following this, IR-TAM is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with oxidative phosphorylation (OXPHOS) inhibitor Tamoxifen (TAM), which then self-assembled with albumin (Alb) to form IR-TAM@Alb nanoparticles. By doing this, tumor-targeting IR-TAM@Alb nanoparticle effectively reversed tumor hypoxia and depressed PD-L1 and TGF-ß expression to sensitize RT. Meanwhile, due to the capacity of heptamethine cyanine dye in targeting RIPF and the function of TAM in depressing TGF-ß, IR-TAM@Alb also ameliorated fibrosis development induced by RT.


Assuntos
Metabolismo Energético , Mitocôndrias , Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Humanos , Radioterapia/métodos , Radioterapia/efeitos adversos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética
2.
ACS Nano ; 18(4): 3331-3348, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227812

RESUMO

Currently, limited photosensitizers possess the capacity to reverse tumor hypoxia and reduce programmed death ligand-1 (PD-L1) and transforming growth factor-ß (TGF-ß) expression simultaneously, hindering the perfect photodynamic therapy (PDT) effect due to acquired immune resistance and the tumor hypoxic microenvironment. To tackle these challenges, in this research, we demonstrated that mitochondrial energy metabolism depression can be utilized as an innovative and efficient approach for reducing the expression of PD-L1 and TGF-ß simultaneously, which may offer a design strategy for a more ideal PDT nanosystem. Through proteomic analysis of 5637 cells, we revealed that tamoxifen (TMX) can incredibly regulate PD-L1 expression in tumor cells. Then, to selectively deliver clinically used mitochondrial energy metabolism depressant TMX to solid tumors as well as design an ideal PDT nanosystem, we synthesized MHI-TMX@ALB by combining a mitochondria-targeted heptamethine cyanine PDT-dye MHI with TMX through self-assembly with albumin (ALB). Interestingly enough, the MHI-TMX@ALB nanoparticle demonstrated effective reversion of tumor hypoxia and inhibition of PD-L1 protein expression at a lower dosage (7.5 times to TMX), which then enhanced the efficacy of photodynamic immunotherapy via enhancing T-cell infiltration. Apart from this, by leveraging the heptamethine dye's targeting capacity toward tumors and TMX's role in suppressing TGF-ß, MHI-TMX@ALB also more effectively mitigated 4T1 tumor lung metastasis development. All in all, the MHI-TMX@ALB nanoparticle could be used as a multifunctional economical PD-L1 and TGF-ß codepression immune-regulating strategy, broadening the potential clinical applications for a more ideal PDT nanosystem.


Assuntos
Antígeno B7-H1 , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Fator de Crescimento Transformador beta , Ligantes , Proteômica , Imunoterapia , Mitocôndrias/metabolismo , Fatores de Crescimento Transformadores , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Int J Biol Macromol ; 254(Pt 2): 127911, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939766

RESUMO

Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Imunoterapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia Combinada , Microambiente Tumoral
4.
J Neurol ; 270(5): 2724-2733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773060

RESUMO

BACKGROUND AND OBJECTIVE: Patients with idiopathic normal pressure hydrocephalus (iNPH) have a higher prevalence of hypertension and diabetes. However, the causal effects of these vascular risk factors on iNPH remain unclear. This study aimed to explore the causal relationship between vascular risk factors (VRFs) and iNPH. METHODS: We conducted the Mendelian randomization (MR) analysis of iNPH. We included nineteen vascular risk factors related to hypertension, diabetes, lipids, obesity, smoking, alcohol consumption, exercise, sleep, and cardiovascular events as exposure factors. We used the inverse-variance weighted method for causal effect estimation and weighted median, maximum likelihood, and MR Egger regression methods for sensitivity analyses. RESULTS: We found that genetically predicting essential hypertension (OR = 1.608 (1.330-1.944), p = 0.013) and increased sleep duration (OR = 16.395 (5.624-47.799), p = 0.009) were associated with higher odds of iNPH. Type 1 diabetes (OR = 0.869 (0.828-0.913), p = 0.004) was associated with lower odds of iNPH. For the other 16 VRFs, there was no evidence that they were significantly associated with iNPH. Sensitivity analyses showed that essential hypertension and type 1 diabetes were significantly associated with iNPH. CONCLUSION: In our MR study on VRFs and iNPH, we found essential hypertension to be a causal risk factor for iNPH. This suggests that hypertension may be involved in the pathophysiological mechanism of iNPH.


Assuntos
Diabetes Mellitus Tipo 1 , Hidrocefalia de Pressão Normal , Hipertensão , Humanos , Hidrocefalia de Pressão Normal/epidemiologia , Hidrocefalia de Pressão Normal/genética , Análise da Randomização Mendeliana , Fatores de Risco , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão Essencial , Estudo de Associação Genômica Ampla
5.
Neural Regen Res ; 17(12): 2710-2716, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662218

RESUMO

Necrostatin-1, an inhibitor of necroptosis, can effectively inhibit necrotic apoptosis in neurological diseases, which results in the inhibition of inflammation, endoplasmic reticulum stress, and reactive oxygen species production and substantial improvement of neurological function. However, the effects of necrostatin-1 on intraventricular hemorrhage (IVH) remain unknown. In this study, we established a mouse model of IVH by injecting autologous blood into the lateral ventricle of the brain. We also injected necrostatin-1 into the lateral ventricle one hour prior to IVH induction. We found that necrostatin-1 effectively reduced the expression levels of the necroptosis markers receptor-interacting protein kinase (RIP)1, RIP3, mixed lineage kinase domain-like protein (MLKL), phosphorylated (p)-RIP3, and p-MLKL and the levels of interleukin-1ß , interleukin-6, and tumor necrosis factor-α in the surrounding areas of the lateral ventricle. However, necrostatin-1 did not reduce ependymal ciliary injury or brain water content. These findings suggest that necrostatin-1 can prevent local inflammation and microglial activation induced by IVH but does not greatly improve prognosis.

6.
J Biomol Struct Dyn ; 40(16): 7584-7597, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33734039

RESUMO

The FGF/FGFR system may affect tumor cells and stromal microenvironment through autocrine and paracrine stimulation, thereby significantly promoting oncogene transformation and tumor growth. Abnormal expression of FGFR1 in cells is considered to be the main cause of tumorigenesis and a potential target for the treatment of cancer. In this study, a combination of structure-based drug carriers and molecular docking-based virtual screening was used to screen new potential FGFR1 inhibitors. Forty eight known inhibitors were collected to establish 3 D-QSAR models and pharmacophore models, investigate the relationship between the activity and conformation of compounds, and verify the efficiency of pharmacophore. In Accelrys Discovery Studio 2016, the ZINC database was filtered by Lipinski's Rule of Five and SMART's filtration. Then, Hypo01 was used for virtual screening of ZINC database. Compounds with predicted activity values less than 1 µM were molecularly docked with FGFR1 protein crystals, the docking results were observed, and the interaction between compounds and targets was studied. The absorption, distribution, metabolism and excretion (ADME) and toxicity of potential inhibitors were studied, and a compound with new structural scaffolds were obtained. It could be further studied to explore their better therapeutic effects. Communicated by Ramaswamy H. Sarma.


Assuntos
Relação Quantitativa Estrutura-Atividade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Zinco
7.
Drug Des Devel Ther ; 15: 1903-1914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976540

RESUMO

AIM: Silymarin contains various flavonoids and exhibits antioxidative, anti-inflammatory, and anticancer effects, in addition to other pharmacological properties. This study explored the alleviating effect of silymarin on multiple-organ damage induced by D-galactose/lipopolysaccharide in Kunming mice. METHODS: Kunming mice were injected intraperitoneally with D-galactose (30 mg/kg·BW)/LPS (3 µg/kg·BW) and then treated using silymarin with different doses (75 mg/kg·bw and 150 mg/kg·bw) via intragastric administration. Changes in organ indexes, pathological changes, liver-function index, biochemical indexes, molecular biological indexes, and genes related to the oxidation and inflammation of main organs were evaluated. RESULTS: After the mice were treated with silymarin, their body weight showed no significant change, and the liver, kidney, and lung indexes of the treated mice were higher than those of the model group; meanwhile, the corresponding histopathological formation was reduced. Compared with the model group, the silymarin-treated group showed reductions in ALT, AST, and liver function indexes in the mouse serum. Silymarin treatment also increased the SOD, CAT, GSH, GSH-Px, T-AOC, IL-10, and IL-12 levels, as well as reduced the MDA, NO, IL-6, IL-1ß, TNF-α, IFN-γ levels in the mouse serum and liver tissues. In addition, quantitative polymerase chain reaction analysis indicated that the mRNA expression levels of SOD1, SOD2, CAT, GSH-Px, IL-10, Nrf2, HO-1, NQO1, Trx, and IκB-α were higher in the liver tissue of the silymarin-treated mice than in those of the model group; meanwhile, the mRNA expression levels of IL-6, IL-1ß, TNF-α, IFN-γ, NF-κB, NLRP3, COX2, and p38 were lower than those in the model group. CONCLUSION: Silymarin, which exhibits antioxidative and anti-inflammatory effects, can alleviate the liver, lung, and kidney damage induced by D-galactose/lipopolysaccharide. High-dose (150 mg/kg·bw) silymarin can more effectively inhibit organ damage, compared with low-dose silymarin (75 mg/kg·bw) in Kunming mice.


Assuntos
Galactose/antagonistas & inibidores , Inflamação/tratamento farmacológico , Lipopolissacarídeos/antagonistas & inibidores , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Administração Oral , Animais , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos , Substâncias Protetoras/administração & dosagem , Silimarina/administração & dosagem
8.
Sci Rep ; 8(1): 6820, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717153

RESUMO

Our previous studies have shown adenosine A2A R activation markedly promotes the expression of cystatin F (CF) and exacerbates the white matter lesions induced by hypoxic brain injuries. Thus, we hypothesized that CF was probably involved in neuroinflammation of activated microglia induced by A2A R activation. We transfected the BV2 cells with a CF shRNA vector and examined the production of pro-inflammatory cytokines in hypoxic-BV2 cells in which A2A R was activated or inactivated to confirm this hypothesis. Additionally, we also investigated the probable signaling pathways involved in modulation of A2A R activation on CF expression in hypoxia-activated BV2 cells. Activation of A2A R promoted CF expression, which was significantly increased after the low glucose and hypoxia treatments in BV2 cells. CF gene knockdown markedly inhibited the increase in the expression of pro-inflammatory cytokines induced by A2A R activation in hypoxic-BV2 cells. Furthermore, the increased expression of the CF induced by A2A R activation was remarkably inhibited in hypoxic-BV2 cells administrated with the PKA inhibitor H-89 and the PKC inhibitor staurosporine. Hence, these results indicate that hypoxia BV2 cells highly express CF, which is involved in A2A R activation-mediated neuroinflammation via the PKA/CREB and PKC/CREB or ERK1/2 signaling pathways.


Assuntos
Cistatinas/genética , Cistatinas/metabolismo , Microglia/citologia , Microglia/metabolismo , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Análise de Variância , Animais , Hipóxia Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases , Camundongos , Fenetilaminas/farmacologia , Proteína Quinase C/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Triazóis/farmacologia
9.
Int J Mol Med ; 41(6): 3559-3569, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29512780

RESUMO

Microglial activation-mediated inflammatory damage to oligodendrocytes is a key step in the etiology of ischemic white matter lesions. The adenosine A1 receptor (A1R) and adenosine A2a receptor (A2aR) have been reported to regulate the activation of microglia, however, the underlying mechanisms remain elusive. Thus, the present study used a microglia/oligodendrocyte co­culture model exposed to low glucose/hypoxia, and treated with agonists/antagonists of A1R and A2aR to investigate the role of A1R and A2aR. Changes in A1R and A2aR expression and inflammatory cytokine secretion by the microglia, and oligodendrocyte damage, after exposure were examined. Low glucose/hypoxia induced a higher elevation of A1R than A2aR. In addition, activation of A1R inhibited A2aR protein expression and vice versa. The A1R antagonist DPCPX (100 nM) and A2aR agonist CGS 21680 (100 nM) inhibited microglial activation, reduced the production of inflammatory cytokines and attenuated oligodendrocyte damage, along with elevating the levels of phosphorylated nuclear factor (NF)­κB and cyclic adenosine monophosphate response element binding protein (CREB). These data indicate that an A1R­A2aR imbalance is able to modulate low glucose­induced microglial activation and the cellular immune response through altering NF­κB and CREB phosphorylation. This suggests that rebalancing A1R­A2aR is a promising approach for treating white matter injury.


Assuntos
Proteína de Ligação a CREB/metabolismo , Glucose/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Oligodendroglia/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Hipóxia/fisiopatologia , Microglia/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Fenetilaminas/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Xantinas/farmacologia
10.
Neurochem Res ; 41(12): 3272-3277, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27662851

RESUMO

We sought to investigate the role of the adenosine A1 receptors (A1ARs) in white matter lesions under chronic cerebral hypoperfusion (CCH) and explore the potential repair mechanisms by activation of the receptors. A right unilateral common carotid artery occlusion (rUCCAO) method was used to construct a CCH model. 2-chloro-N6-cyclopentyladenosine (CCPA), a specific agonist of A1ARs, was used to explore the biological mechanisms of repair in white matter lesions under CCH. The expression of mammalian target of rapamycin (mTOR), phosphorylation of mTOR (P-mTOR), myelin basic protein (MBP, a marker of white matter myelination) were detected by Western-blot. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokine interleukin-10 (IL-10) levels were determined by ELISA. Compared with the control groups on week 2, 4 and 6, in CCPA-treated groups, the ratio of P-mTOR/mTOR, expression of MBP and IL-10 increased markedly, while the expression of TNF-α reduced at week 6. In conclusion, A1ARs appears to reduce inflammation in white matter via the mTOR signaling pathway in the rUCCAO mice. Therefore, A1ARs may serve as a therapeutic target during the repair of white matter lesions under CCH.


Assuntos
Encéfalo/irrigação sanguínea , Leucoencefalopatias/patologia , Receptor A1 de Adenosina/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/metabolismo , Artéria Carótida Primitiva/patologia , Estenose das Carótidas/complicações , Inflamação/metabolismo , Interleucina-10/metabolismo , Leucoencefalopatias/etiologia , Leucoencefalopatias/metabolismo , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Fosforilação , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA