Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Res ; 257: 119239, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810825

RESUMO

Groundwater contamination with arsenic and nitrate poses a pressing concern for the safety of local communities. Bioremediation, utilizing Fe(II)-oxidizing nitrate reducing bacteria, shows promise as a solution to this problem. However, the relatively weak environmental adaptability of a single bacterium hampers practical application. Therefore, this study explored the feasibility and characteristics of a mixed iron-dependent autotrophic denitrifying (IDAD) culture for effectively removing arsenic and nitrate from synthetic groundwater. The IDAD biosystem exhibited stable performace and arsenic resistance, even at a high As(III) concentration of 800 µg/L. Although the nitrogen removal efficiency of the IDAD biosystem decreased from 71.4% to 64.7% in this case, the arsenic concentration in the effluent remained below the standard (10 µg/L) set by WHO. The crystallinity of the lepidocrocite produced by the IDAD culture decreased with increasing arsenic concentration, but the relative abundance of the key iron-oxidizing bacteria norank_f_Gallionellaceae in the culture showed an opposite trend. Metagenomic analysis revealed that the IDAD culture possess arsenic detoxification pathways, including redox, methylation, and efflux of arsenic, which enable it to mitigate the adverse impact of arsenic stress. This study provides theoretical understanding and technical support for the remediation of arsenic and nitrate-contaminated groundwater using the IDAD culture.

2.
Environ Int ; 185: 108499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368718

RESUMO

The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.


Assuntos
Antibacterianos , Compostos Férricos , Transformação Bacteriana , Humanos , Antibacterianos/farmacologia , Escherichia coli/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Óxidos , Ferro , Microbiologia do Solo , Esterco/microbiologia
3.
Cell Signal ; 115: 111041, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199598

RESUMO

Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Peptidilprolil Isomerase , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
4.
Reprod Biomed Online ; 48(2): 103584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061975

RESUMO

RESEARCH QUESTION: Are the observed associations between female reproductive factors and sex hormones with the risk of uterine leiomyoma truly causal associations? DESIGN: The putative causal relationships between female reproductive factors and sex hormones with uterine leiomyoma were investigated using two-sample Mendelian randomization. Statistics on exposure-associated genetic variants were obtained from genome-wide association studies (GWAS). The uterine leiomyoma GWAS from the FinnGen and FibroGENE consortia were used as outcome data for discovery and replication analyses, respectively. Results were pooled by meta-analysis. Sensitivity analyses ensured robustness of the Mendelian randomization analysis. RESULTS: When FinnGen GWAS were used as outcome data, a causal relationship was found between age at menarche (OR 0.84, P < 0.0001), age at menopause (OR 1.08, P < 0.0001), number of live births (OR 0.25, P < 0.001) and total testosterone levels (OR 0.90, P < 0.001) with the risk of uterine leiomyoma. When FibroGENE GWAS were used as outcome data, Mendelian randomization results for age at menopause, the number of live births and total testosterone levels were replicated. In the meta-analysis, a later age at menopause (OR 1.08, P < 0.0001) was associated with an increased risk of uterine leiomyoma. A higher number of live births (OR 0.25, P < 0.0001) and higher total testosterone levels (OR 0.90, P < 0.0001) were associated with a decreased risk of uterine leiomyoma. CONCLUSIONS: A causal relationship between later age at menopause, lower number of live births and lower total testosterone levels with increased risk of uterine leiomyoma was found.


Assuntos
Estudo de Associação Genômica Ampla , Leiomioma , Humanos , Feminino , Análise da Randomização Mendeliana , Fatores Sexuais , Hormônios Esteroides Gonadais , Leiomioma/genética , Testosterona
5.
Chem Biol Interact ; 384: 110726, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741537

RESUMO

Neuronal apoptosis and neuroinflammation are key factors involved in the pathological changes of Parkinson's disease (PD). Sophoricoside (SOP) has shown anti-inflammatory and anti-apoptosis effects in various diseases. However, the role of SOP in PD has not been reported. In this experiment, we found that oral administration of SOP alleviated weight loss and motor symptoms in 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-injected mice. Further studies revealed that SOP inhibited inflammatory responses and neuronal apoptosis in the midbrain region of MPTP-injected mice. In vitro mechanistic study, we found that SOP exerts neuroprotective effects through a two-sided action. On the one hand, SOP inhibits Lipopolysaccharide (LPS)-induced inflammatory responses in microglia by inhibiting the Nuclear factor kappa-B(NF-κB) pathway. On the other hand, SOP inhibits 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Thus SOP is expected to be a potential therapeutic agent for PD by targeting neuroinflammation and neuronal apoptosis.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Doenças Neuroinflamatórias , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , NF-kappa B/metabolismo , 1-Metil-4-fenilpiridínio , Administração Oral , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Microglia , Neurônios Dopaminérgicos , Mamíferos/metabolismo
6.
Int Immunopharmacol ; 120: 110334, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244113

RESUMO

Accumulating research has indicated that inordinate activation of microglia releases inflammatory cytokines, damages neurons, and causes neuroinflammation, which eventually could lead to neurodegenerative diseases such as Parkinson's disease and Huntington's disease, etc. Notopterol (NOT) has anti-inflammatory and anti-oxidant functions in boundary tissues, but the effects of NOT on neuroinflammation have not been covered. Therefore, this study attempts to investigate the effect of NOT on neuroinflammation and the underlying mechanisms. According to the findings, NOT dramatically decreased the expression of pro-inflammatory mediators (interleukin-6 (IL-6), inducible nitric-oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and Cyclooxygenase-2 (COX-2)) in LPS-exposed BV-2 cells. Western blot analysis revealed that NOT could promote the activation of AKT/Nrf2/HO-1 signaling pathway. Further studies have shown that anti-inflammatory property of NOT was inhibited by MK2206 (an AKT inhibitor), RA (an Nrf2 inhibitor), and SnPP IX (an HO-1 inhibitor). In addition, it was also discovered that NOT could weaken the damage of LPS to BV-2 cells and improve their survival rate. As a result, our results imply that NOT inhibits the inflammatory response of BV-2 cells through the AKT/Nrf2/HO-1 signaling axis and exerts a neuroprotective effect by inhibiting the activation of BV-2 cells.


Assuntos
Lipopolissacarídeos , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Microglia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
7.
Front Biosci (Landmark Ed) ; 28(2): 26, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36866547

RESUMO

BACKGROUND: The stemness characteristics of cancer cells, such as self-renewal and tumorigenicity, are considered to be responsible, in part, for tumor metastasis. Epithelial-to-mesenchymal transition (EMT) plays an important role in promoting both stemness and tumor metastasis. Although the traditional medicine juglone is thought to play an anticancer role by affecting cell cycle arrest, induction of apoptosis, and immune regulation, a potential function of juglone in regulating cancer cell stemness characteristics remains unknown. METHODS: In the present study, tumor sphere formation assay and limiting dilution cell transplantation assays were performed to assess the function of juglone in regulating maintenance of cancer cell stemness characteristics. EMT of cancer cells was assessed by western blot and transwell assay in vitro, and a liver metastasis model was also performed to demonstrate the effect of juglone on colorectal cancer cells in vivo. RESULTS: Data gathered indicates juglone inhibits stemness characteristics and EMT in cancer cells. Furthermore, we verified that metastasis was suppressed by juglone treatment. We also observed that these effects were, in part, achieved by inhibiting Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1). CONCLUSIONS: These results indicate that juglone inhibits maintenance of stemness characteristics and metastasis in cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Naftoquinonas , Neoplasias , Células-Tronco Neoplásicas , Apoptose , Western Blotting , Neoplasias/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Naftoquinonas/farmacologia
8.
J Neuroinflammation ; 20(1): 86, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991440

RESUMO

BACKGROUND: Previous studies have shown a close association between an altered immune system and Parkinson's disease (PD). Neuroinflammation inhibition may be an effective measure to prevent PD. Recently, numerous reports have highlighted the potential of hydroxy-carboxylic acid receptor 2 (HCA2) in inflammation-related diseases. Notably, the role of HCA2 in neurodegenerative diseases is also becoming more widely known. However, its role and exact mechanism in PD remain to be investigated. Nicotinic acid (NA) is one of the crucial ligands of HCA2, activating it. Based on such findings, this study aimed to examine the effect of HCA2 on neuroinflammation and the role of NA-activated HCA2 in PD and its underlying mechanisms. METHODS: For in vivo studies, 10-week-old male C57BL/6 and HCA2-/- mice were injected with LPS in the substantia nigra (SN) to construct a PD model. The motor behavior of mice was detected using open field, pole-climbing and rotor experiment. The damage to the mice's dopaminergic neurons was detected using immunohistochemical staining and western blotting methods. In vitro, inflammatory mediators (IL-6, TNF-α, iNOS and COX-2) and anti-inflammatory factors (Arg-1, Ym-1, CD206 and IL-10) were detected using RT-PCR, ELISA and immunofluorescence. Inflammatory pathways (AKT, PPARγ and NF-κB) were delineated by RT-PCR and western blotting. Neuronal damage was detected using CCK8, LDH, and flow cytometry assays. RESULTS: HCA2-/- increases mice susceptibility to dopaminergic neuronal injury, motor deficits, and inflammatory responses. Mechanistically, HCA2 activation in microglia promotes anti-inflammatory microglia and inhibits pro-inflammatory microglia by activating AKT/PPARγ and inhibiting NF-κB signaling pathways. Further, HCA2 activation in microglia attenuates microglial activation-mediated neuronal injury. Moreover, nicotinic acid (NA), a specific agonist of HCA2, alleviated dopaminergic neuronal injury and motor deficits in PD mice by activating HCA2 in microglia in vivo. CONCLUSIONS: Niacin receptor HCA2 modulates microglial phenotype to inhibit neurodegeneration in LPS-induced in vivo and in vitro models.


Assuntos
Niacina , Doença de Parkinson , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Neurônios Dopaminérgicos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Niacina/farmacologia , Doença de Parkinson/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
9.
Cells ; 11(18)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139502

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases. However, its effect and mechanism in PD remain unclear. In this study, results showed that IAL administration ameliorated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD-related pathological impairment and decreased motor activity in mice. Results from in vitro mechanistic studies showed that IAL regulated apoptosis-related proteins by activating the AKT/Nrf2 pathway, thereby suppressing the apoptosis of SN4741 cells induced by N-methyl-4-phenylpyridinium Iodide (MPP+). On the other hand, IAL inhibited LPS-induced release of pro-inflammatory mediators in BV2 cells by activating the AKT/Nrf2/HO-1 pathway and inhibiting the NF-κB pathway. In addition, IAL protected SN4741 from microglial activation-mediated neurotoxicity. Taken together, these results highlight the beneficial role of IAL as a novel therapy and potential PD drug due to its pharmacological profile.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-fenilpiridínio , Apoptose , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Iodetos/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt , Pirrolidinas , Sesquiterpenos
10.
Chemosphere ; 301: 134753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490752

RESUMO

The capability of laccase to oxidate a broad range of polyphenols and aromatic substrates in vitro offers a new technological option for the remediation of polycyclic aromatic hydrocarbon (PAH) pollution with high cytotoxicity. However, laccase application in the remediation of PAH-contaminated sites mainly suffers from a low oxidation rate and high cost because of the difficulty in its recovery. In this study, laccases were immobilized on magnetic Fe3O4 particles coated with chitosan (Fe3O4@SiO2-chitosan) to improve the operational stability and reusability in the treatment of PAH pollution. The enzyme fixation capacity reached 158 mg g-1, and 79.1% of free laccase activities were reserved under the optimum immobilized condition of 4% glutaraldehyde, 1.0 mg mL-1 laccase, 2 h covalent bonding time, and 6 h fixation time. The degradation efficiencies of anthracene (ANT) and benzo[a]pyrene (B(a)P) by Fe3O4@SiO2-chitosan immobilized laccase in 48 h were 81.9% and 69.2%, respectively. Furthermore, it is very easy to magnetically recover the immobilized laccase from reaction systems and reuse it in a new batch. The relative activities of immobilized laccase were over 50% for the degradation of ANT and B(a)P in three catalytic runs, reaching the goal of substantially reducing cost in practice. According to the results from quantum calculations and mass spectrum analyses, the degradation products of ANT and B(a)P by laccase were anthraquinone and B(a)P-dione, respectively. The findings from this study provide valuable insight in promoting the application of immobilized laccase technology in the remediation of PAH contamination.


Assuntos
Quitosana , Hidrocarbonetos Policíclicos Aromáticos , Catálise , Enzimas Imobilizadas/metabolismo , Lacase/metabolismo , Fenômenos Magnéticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polyporaceae , Dióxido de Silício/metabolismo , Trametes
11.
Inflammation ; 45(1): 129-142, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401976

RESUMO

Evodiamine, an alkaloid component in the fruit of Evodia, has been shown to have biological functions such as antioxidant and anti-inflammatory. But whether evodiamine plays an improvement role on mastitis has not been studied. To investigate the effect and mechanism of evodiamine on lipopolysaccharide (LPS)-induced mastitis was the purpose of this study. In animal experiments, the mouse mastitis model was established by injecting LPS into the canals of the mammary gland. The results showed that evodiamine could significantly relieve the pathological injury of breast tissue and the production of pro-inflammatory cytokines and inhibit the activation of inflammation-related pathways such as AKT, NF-κB p65, ERK1/2, p38, and JNK. In cell experiments, the mouse mammary epithelial cells (mMECs) were incubated with evodiamine for 1 h and then stimulated with LPS. Next, pro-inflammatory mediators and inflammation-related signal pathways were detected. As expected, our results showed that evodiamine notably ameliorated the inflammatory reaction and inhibit the activation of related signaling pathways of mMECs. All the results suggested that evodiamine inhibited inflammation by inhibiting the phosphorylation of AKT, NF-κBp65, ERK1/2, p38, and JNK thus the LPS-induced mastitis was ameliorated. These findings suggest that evodiamine maybe a potential drug for mastitis because of its anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Mastite/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Fator de Transcrição RelA/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Feminino , Lipopolissacarídeos , Mastite/etiologia , Mastite/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Quinazolinas/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
12.
Aesthetic Plast Surg ; 46(1): 231-236, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34739554

RESUMO

BACKGROUND: This article presents a new method using a dermis-outer orbicularis fascia-orbicularis-levator (DOOL) fixation technique for double-eyelid blepharoplasty. METHODS: Our surgical technique preserves the preorbicular venous network (POVN) and uses mattress sutures to fix the dermis, outer fascia of the orbicularis oculi muscle, and orbicularis oculi muscle with pretarsal levator aponeurosis (DOOL). Between January 2016 and July 2018, 335 patients were treated with this POVN-preserving DOOL technique (321 women and 14 men; mean age, 29.6 y). The patients were followed up for 6-30 months. The complications were documented, and the overall outcomes of the upper eyelid folds were evaluated by both surgeons and patients as good, fair, or poor. RESULTS: Among 335 patients, 307 (91.6%) had good results, 17 (5.1%) had fair results, and 11 (3.3%) had poor results. Postoperative complications included partial (n=4) or complete (n=3) loss of the double-eyelid line and asymmetric folds (n=4). Hypertrophic/depressed scars did not occur. CONCLUSIONS: With less invasiveness and secure internal fixation, the DOOL fixation technique with POVN preservation can achieve a stable and natural double-eyelid appearance. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Blefaroplastia , Adulto , Blefaroplastia/métodos , Derme/cirurgia , Pálpebras/cirurgia , Músculos Faciais/cirurgia , Fáscia , Feminino , Humanos , Masculino , Estudos Retrospectivos
13.
Exp Ther Med ; 22(3): 958, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34335900

RESUMO

Forkhead box P3 (FOXP3) is a specific marker of regulatory T cells (Tregs) that is also expressed in tumour cells. Previous studies have revealed that FOXP3 can promote metastasis in several types of cancer, including non-small cell lung cancer (NSCLC); however, the underlying mechanism of FOXP3 remains unclear. The aim of the present study was to investigate the effect of FOXP3 on vascular endothelial growth factor (VEGF), epithelial-to-mesenchymal transition (EMT) and the Notch1/Hes1 pathway in NSCLC. After FOXP3 small interfering RNA (siRNAs) were transfected into A549 cells, the expression of FOXP3 mRNA and protein was determined by reverse transcription-quantitative PCR and western blotting. Cell migration and invasion were analyzed by Transwell assays. The concentrations of matrix metalloproteinase (MMP)-2, MMP-9 and VEGF in the cell supernatant were evaluated by ELISA. The expression of relevant proteins involved in EMT and Notch1/Hes1 pathway were assessed via western blotting. Additionally, the expression of FOXP3, CD31 and E-cadherin was detected by immunohistochemical (IHC) staining of 55 human NSCLC tissue samples. The results demonstrated that FOXP3 knockdown significantly inhibited the cell migratory and invasive abilities, decreased the concentrations of MMP-2, MMP-9 and VEGF, downregulated the protein expression of vimentin, N-cadherin, Notch1 and Hes family BHLH transcription factor 1 (Hes1), and upregulated the protein expression of E-cadherin. Furthermore, FOXP3 expression was positively associated with CD31+ vascular endothelial cells and negatively correlated with E-cadherin in NSCLC tissues. In addition, the Notch1/Hes1 pathway inhibitor DAPT significantly downregulated the expression of FOXP3 in a dose-dependent manner. Taken together, these findings demonstrated that FOXP3 may facilitate the invasive and migratory abilities of NSCLC cells via regulating the angiogenic factor VEGF, the EMT and the Notch1/Hes1 pathway.

14.
Am J Physiol Endocrinol Metab ; 320(4): E786-E796, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586490

RESUMO

We investigated the expression levels of nephroblastoma overexpressed [NOV or CCN3 (cellular communication network factor 3)] in the serum and placenta of pregnant women and of pregnant mice fed a high-fat diet (HFD), and its effect on placental glucose transporter 3 (GLUT3) expression, to examine its role in gestational diabetes mellitus (GDM). NOV/CCN3 expression was increased in the mouse serum during pregnancy. At gestational day 18, NOV/CCN3 protein expression was increased in the serum and placenta of the HFD mice compared with that of mice fed a normal diet. Compared with non-GDM patients, the patients with GDM had significantly increased serum NOV/CCN3 protein expression and placental NOV/CCN3 mRNA expression. Therefore, we hypothesized that NOV/CCN3 signaling may be involved in the pathogenesis of GDM. We administered NOV/CCN3 recombinant protein via intraperitoneal injections to pregnant mice fed HFD or normal diet. NOV/CCN3 overexpression led to glucose intolerance. Combined with the HFD, NOV/CCN3 exacerbated glucose intolerance and caused insulin resistance. NOV/CCN3 upregulates GLUT3 expression and affects the mammalian target of rapamycin (mTOR) pathway in the GDM environment in vivo and in vitro. In summary, our results demonstrate, for the first time, the molecular mechanism of NOV/CCN3 signaling in maternal metabolism to regulate glucose balance during pregnancy. NOV/CCN3 may be a potential target for detecting and treating GDM.NEW & NOTEWORTHY NOV/CCN3 regulates glucose homeostasis in mice during pregnancy. NOV/CCN3 upregulates GLUT3 expression and affects the mTOR pathway in the GDM environment in vivo and in vitro.


Assuntos
Dieta Hiperlipídica , Transportador de Glucose Tipo 3/genética , Proteína Sobre-Expressa em Nefroblastoma/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Gorduras na Dieta/farmacologia , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Aesthet Surg J ; 41(5): NP188-NP195, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33252641

RESUMO

BACKGROUND: For the patients seeking secondary upper blepharoplasty, a static double-eyelid fold featuring an immobile lower flap and depression of the fold is common. OBJECTIVES: In this study, the authors propose a novel technique of reconstructing pretarsal tissue defects (PTDs) to converting static folds to dynamic folds. METHODS: A total of 203 patients with static folds underwent revision surgery. After complete adhesion release of the lower flap, a PTD was identified, which was defined as an area deficient of orbicularis oculi muscle in front of the tarsal plate. If the width of the PTD was over 2 mm, tissue transfer was performed to reconstruct the PTD, usually with a free retro-orbicularis oculus fat graft or a pretarsal orbicularis oculi flap. RESULTS: Among the 105 patients with severe static folds, 67 received retro-orbicularis oculus fat grafts and 38 received orbicularis oculi muscle flaps. This technique converted a static fold into a dynamic fold. The surgery satisfaction rate was 86.7%. Complications included partial fold loss (n = 7, 3.4%), complete fold loss (n = 3, 1.5%), sunken upper eyelids (n = 5, 2.5%), multiple folds (n = 3, 1.5%), an unnatural curve of the double fold (n = 5, 2.5%), and asymmetric folds (n = 4, 2.0%). CONCLUSIONS: To convert a static fold to a dynamic fold, we devised a technique that releases adhesion of the lower flap and reconstructs the PTD with retro-orbicularis oculus fat graft or an orbicularis oculi muscle flap. Our study achieved a high patient satisfaction rate, and the resulting fold mimicked the dynamics of the congenital double-eyelid fold.


Assuntos
Blefaroplastia , Blefaroplastia/efeitos adversos , Pálpebras/cirurgia , Músculos Faciais/cirurgia , Humanos , Satisfação do Paciente , Retalhos Cirúrgicos
16.
Poult Sci ; 99(11): 6196-6204, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142537

RESUMO

This experiment was conducted to investigate the effects of manganese (Mn) and Bacillus subtilis (BS) on the production performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. A total of 120 forty-six-week-old breeding geese (Wulong) were randomly assigned to 1 of 6 treatment diets formulated to supply 10, 20, and 30 mg/kg Mn with 5 × 109 CFU/kg or 2.5 × 109 CFU/kg BS for a 10-wk trial. Results showed that dietary supplementation with 20 and 30 mg/kg Mn could decrease the daily feed intake (DFI) of geese. Moreover, 30 mg/kg Mn significantly increased the laying rate. Besides, although Mn addition had no obvious effect on egg quality, 5 × 109 CFU/kg BS was found to elevate the hatching egg hatching rate and eggshell thickness. For the serum hormones, 30 mg/kg Mn promoted estradiol secretion, while 5 × 109 CFU/kg BS increased the level of follicle-stimulating hormone. Furthermore, 20 and 30 mg/kg Mn and 5 × 109 CFU/kg BS significantly enhanced the total antioxidant capacity by increasing the activity of total superoxide dismutases or decreasing the content of malondialdehyde. Dietary supplementation with 5 × 109 CFU/kg BS also increased the intestinal villus height and upregulated the abundance of Fusobacteria, Fusobacteriaceae, Fusobacterium, and Faecalibacterium in cecal content. In addition, 20 and 30 mg/kg Mn elevated the levels of Bacteroidetes, Bacteroidaceae, Bacteroides, and Ruminococcaceae but decreased Streptococcaceae. Importantly, an interaction effect was observed between Mn and BS on the DFI, egg mass, average egg size, and the abundance of Bacteroides as well as Faecalibacterium. In conclusion, dietary inclusion of Mn and BS could improve the production performance, egg quality, antioxidant capacity, intestinal structure, as well as gut microbiota. Supplementation of 30 mg/kg Mn and 5.0 × 109 CFU/kg BS provided the optimal effect.


Assuntos
Bacillus subtilis , Suplementos Nutricionais , Microbioma Gastrointestinal , Gansos , Manganês , Probióticos , Zigoto , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes , Dieta/veterinária , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Manganês/farmacologia , Distribuição Aleatória , Zigoto/efeitos dos fármacos , Zigoto/microbiologia
17.
Cell Death Dis ; 11(9): 792, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968053

RESUMO

Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein. We had reported that CPEB3 is involved in hepatocellular carcinoma (HCC) progression. However, the underlying mechanisms of CPEB3 in HCC remain unclear. In this study, we firstly performed RNA immunoprecipitation to uncover the transcriptome-wide CPEB3-bound mRNAs (CPEB3 binder) in HCC. Bioinformatic analysis indicates that CPEB3 binders are closely related to cancer progression, especially HCC metastasis. Further studies confirmed that metadherin (MTDH) is a direct target of CPEB3. CPEB3 can suppress the translation of MTDH mRNA in vivo and in vitro. Besides, luciferase assay demonstrated that CPEB3 interacted with 3'-untranslated region of MTDH mRNA and inhibited its translation. Subsequently, CPEB3 inhibited the epithelial-mesenchymal transition and metastasis of HCC cells through post-transcriptional regulation of MTDH. In addition, cpeb3 knockout mice are more susceptible to carcinogen-induced hepatocarcinogenesis and subsequent lung metastasis. Our results also indicated that CPEB3 was a good prognosis marker, which is downregulated in HCC tissue. In conclusion, our results demonstrated that CPEB3 played an important role in HCC progression and targeting CPEB3-mediated mRNA translation might be a favorable therapeutic approach.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo
18.
Plant J ; 102(3): 467-479, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31816133

RESUMO

Structural Maintenance of Chromosomes 2 (SMC2) and Structural Maintenance of Chromosomes 4 (SMC4) are the core components of the condensin complexes, which are required for chromosome assembly and faithful segregation during cell division. Because of the crucial functions of both proteins in cell division, much work has been done in various vertebrates, but little information is known about their roles in plants. Here, we identified ZmSMC2 and ZmSMC4 in maize (Zea mays) and confirmed that ZmSMC2 associates with ZmSMC4 via their hinge domains. Immunostaining revealed that both proteins showed dynamic localization during mitosis. ZmSMC2 and ZmSMC4 are essential for proper chromosome segregation and for H3 phosphorylation at Serine 10 (H3S10ph) at pericentromeres during mitotic division. The loss of function of ZmSMC2 and ZmSMC4 enlarges mitotic chromosome volume and impairs sister chromatid separation to the opposite poles. Taken together, these findings confirm and extend the coordinated role of ZmSMC2 and ZmSMC4 in maintenance of normal chromosome architecture and accurate segregation during mitosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/fisiologia , Proteínas de Ligação a DNA/genética , Mitose/genética , Complexos Multiproteicos/genética , Proteínas de Plantas/genética , Zea mays/genética
19.
Int Immunopharmacol ; 73: 118-127, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31085459

RESUMO

Myeloid-derived suppressor cells (MDSCs) contribute to immune activity suppression and promote the tumor progression. Elimination of MDSCs is a promising cancer therapeutic strategy, and some chemotherapeutic agents have been reported to hamper tumor progression by suppressing MDSCs. Juglone has been showed to exert a direct cytotoxic effect on tumor cells. However, the effect of juglone on MDSCs and anti-tumor immune statue has remained unexplored. In our study, we observed that juglone suppressed tumor growth and metastasis markedly, and the tumor growth suppression in immunocompetent mice was more drastic than that in immunodeficient mice. Juglone reduced the accumulation of MDSCs and increased IFN-γ production by CD8+ T cells. Consistently, juglone affected myeloid cells differentiation and maturation, impairing the immunosuppressive functions of MDSCs. Moreover, juglone down-regulated the level of IL-1ß which was mediating accumulation of MDSCs. In addition, juglone inhibited 5FU-induced liver injury in a colorectal carcinoma-bearing mice model. Thus, our work suggests that the anti-tumor effect of juglone is mediated, at least in part, by eliminating accumulation of MDSCs.


Assuntos
Antineoplásicos/farmacologia , Células Supressoras Mieloides/efeitos dos fármacos , Naftoquinonas/farmacologia , Neoplasias/imunologia , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fluoruracila/efeitos adversos , Interferon gama/imunologia , Interleucina-1beta/imunologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
20.
Cell Physiol Biochem ; 44(3): 1051-1063, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29179207

RESUMO

BACKGROUND/AIMS: Cancer stem cells (CSCs) are considered to be responsible for tumor relapse and metastasis, which serve as a potential therapeutic target for cancer. Aspirin has been shown to reduce cancer risk and mortality, particularly in colorectal cancer. However, the CSCs-suppressing effect of aspirin and its relevant mechanisms in colorectal cancer remain unclear. METHODS: CCK8 assay was employed to detect the cell viability. Sphere formation assay, colony formation assay, and ALDH1 assay were performed to identify the effects of aspirin on CSC properties. Western blotting was performed to detect the expression of the stemness factors. Xenograft model was employed to identify the anti-cancer effects of aspirin in vivo. Unpaired Student t test, ANOVA test and Kruskal-Wallis test were used for the statistical comparisons. RESULTS: Aspirin attenuated colonosphere formation and decreased the ALDH1 positive cell population of colorectal cancer cells. Aspirin inhibited xenograft tumor growth and reduced tumor cells stemness in nude mice. Consistently, aspirin decreased the protein expression of stemness-related transcription factors, including c-Myc, OCT4 and NANOG. Suppression of NANOG blocked the effect of aspirin on sphere formation. Conversely, ectopic expression of NANOG rescued the aspirin-repressed sphere formation, suggesting that NANOG is a key downstream target. Moreover, we found that aspirin repressed NANOG expression in protein level by decreasing its stability. CONCLUSION: We have provided new evidence that aspirin attenuates CSC properties through down-regulation of NANOG, suggesting aspirin as a promising therapeutic agent for colorectal cancer treatment.


Assuntos
Aspirina/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteína Homeobox Nanog/metabolismo , Animais , Aspirina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Homeobox Nanog/antagonistas & inibidores , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA