Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(18): 12346-12366, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36053318

RESUMO

The development of triple-negative breast cancer (TNBC) is highly associated with G-quadruplex (G4); thus, targeting G4 is a potential strategy for TNBC therapy. Because concomitant histone deacetylases (HDAC) inhibition could amplify the impact of G4-targeting compounds, we designed and synthesized two novel series of G4/HDAC dual-targeting compounds by connecting the zinc-binding pharmacophore of HDAC inhibitors to the G4-targeting isaindigotone scaffold (1). Among the new compounds, a6 with the potent HDAC inhibitory and G4 stabilizing activity could induce more DNA G4 formation than SAHA and 1 in TNBC cells. Remarkably, a6 caused more G4-related DNA damage and G4-related differentially expressed genes, consistent with its effect on disrupting the cell cycle, invasion, and glycolysis. Furthermore, a6 significantly suppresses the proliferation of various TNBC cells and the MDA-MB-231 xenograft model without evident toxicity. Our study suggests a novel strategy for TNBC therapeutics through dual-targeting HDAC and G4.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , DNA/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Zinco/farmacologia
2.
J Med Chem ; 65(19): 12675-12700, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36121464

RESUMO

c-MYC is a key driver of tumorigenesis. Repressing the transcription of c-MYC by stabilizing the G-quadruplex (G4) structure with small molecules is a potential strategy for cancer therapy. Herein, we designed and synthesized 49 new derivatives by introducing carbohydrates to our previously developed c-MYC G4 ligand 1. Among these compounds, 19a coupled with a d-glucose 1,2-orthoester displayed better c-MYC G4 binding, stabilization, and protein binding disruption abilities than 1. Our further evaluation indicated that 19a blocked c-MYC transcription by targeting the promoter G4, leading to c-MYC-dependent cancer cell death in triple-negative breast cancer cell MDA-MB-231. Also, 19a significantly inhibited tumor growth in the MDA-MB-231 mouse xenograft model accompanied by c-MYC downregulation. Notably, the safety of 19a was dramatically improved compared to 1. Our findings indicated that 19a could become a promising anticancer candidate, which suggested that introducing carbohydrates to improve the G4-targeting and antitumor activity is a feasible option.


Assuntos
Antineoplásicos , Quadruplex G , Inibidores de 14-alfa Desmetilase , Animais , Antineoplásicos/química , Carboidratos , Glucose , Humanos , Imidazóis , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Açúcares , Edulcorantes
3.
J Med Chem ; 63(17): 9752-9772, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32697083

RESUMO

DNA damage response (DDR) pathways are crucial for the survival of cancer cells and are attractive targets for cancer therapy. Bloom syndrome protein (BLM) is a DNA helicase that performs important roles in DDR pathways. Our previous study discovered an effective new BLM inhibitor with a quinazolinone scaffold by a screening assay. Herein, to better understand the structure-activity relationship (SAR) and biological roles of the BLM inhibitor, a series of new derivatives were designed, synthesized, and evaluated based on this scaffold. Among them, compound 9h exhibited nanomolar inhibitory activity and binding affinity for BLM. 9h could effectively disrupt BLM recruitment to DNA in cells. Furthermore, 9h inhibited the proliferation of the colorectal cell line HCT116 by significantly triggering DNA damage in the telomere region and inducing apoptosis, especially in combination with a poly (ADP-ribose) polymerase (PARP) inhibitor. This result suggested a synthetic lethal effect between the BLM and PARP inhibitors in DDR pathways.


Assuntos
Dano ao DNA , Desenho de Fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , RecQ Helicases/antagonistas & inibidores , Telômero/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Sinergismo Farmacológico , Células HCT116 , Humanos , Modelos Moleculares , Conformação Proteica , Quinazolinonas/química , RecQ Helicases/química , Relação Estrutura-Atividade
4.
Bioorg Chem ; 91: 103131, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31377387

RESUMO

For the development of novel anticancer agents, we designed and synthesized a total of 37 perimidine o-quinone derivatives containing the o-quinone group at the A or B ring and different substituents (alkyl groups, aryl groups or heterocycles) at the C ring of the compounds. The structure-activity relationships (SARs) were established based on the cytotoxicity data of compounds from the HL-60, Huh7, Hct116, and Hela cell lines. The cytotoxicity results showed that most compounds exhibited potent cytotoxicity. In particular, compound b-12 showed the best anti-proliferative activity (IC50 ≤ 1 µM) against four cancer cell lines and strong potency against the HL-60/MX2 (0.47 µM) cell line, which is resistant to Topo II poisons. Further studies showed that b-12 exhibited potent Topo IIα inhibitory activity (IC50 = 7.54 µM) compared with Topo I, which acted as a class of non-intercalative Topo IIα catalytic inhibitor by inhibiting the ATP binding site of Topo II. Cell apoptosis and cell cycle assays confirmed that b-12 could induce the apoptosis of Huh7 cells in a dose-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Quinazolinas/farmacologia , Quinonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinonas/síntese química , Quinonas/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
5.
J Med Chem ; 62(6): 3147-3162, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30827110

RESUMO

Homologous recombination repair (HRR), a crucial approach in DNA damage repair, is an attractive target in cancer therapy and drug design. The Bloom syndrome protein (BLM) is a 3'-5' DNA helicase that performs an important role in HRR regulation. However, limited studies about BLM inhibitors and their biological effects have been reported. Here, we identified a class of isaindigotone derivatives as novel BLM inhibitors by synthesis, screening, and evaluating. Among them, compound 29 was found as an effective BLM inhibitor with a high binding affinity and good inhibitory effect on BLM. Cellular evaluation indicated that 29 effectively disrupted the recruitment of BLM at DNA double-strand break sites, promoted an accumulation of RAD51, and regulated the HRR process. Meanwhile, 29 significantly induced DNA damage responses, as well as apoptosis and proliferation arrest in cancer cells. Our finding provides a potential anticancer strategy based on interfering with BLM via small molecules.


Assuntos
Alcaloides/farmacologia , DNA/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Quinazolinas/farmacologia , RecQ Helicases/antagonistas & inibidores , Reparo de DNA por Recombinação , Alcaloides/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HCT116 , Humanos , Quinazolinas/química , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo
6.
Eur J Med Chem ; 130: 139-153, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28242549

RESUMO

A series of 2-arylethenyl-N-methylquinolinium derivatives were designed and synthesized based on our previous research of 2-arylethenylquinoline analogues as multifunctional agents for the treatment of Alzheimer's disease (AD) (Eur. J. Med. Chem. 2015, 89, 349-361). The results of in vitro biological activity evaluation, including ß-amyloid (Aß) aggregation inhibition, cholinesterase inhibition, and antioxidant activity, showed that introduction of N-methyl in quinoline ring significantly improved the anti-AD potential of compounds. The optimal compound, compound a12, dramatically attenuated the cell death of glutamate-induced HT22 cells by preventing the generation of ROS and increasing the level of GSH. Most importantly, intragastric administration of a12•HAc was well tolerated at doses up to 2000 mg/kg and could traverse blood-brain barrier.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Quinolinas/química , Peptídeos beta-Amiloides/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Barreira Hematoencefálica/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Inibidores da Colinesterase/química , Desenho de Fármacos , Glutationa/metabolismo , Humanos , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
J Med Chem ; 58(23): 9395-413, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26572282

RESUMO

Our recent study has shown that the natural product bouchardatine (1) can reduce the triglyceride (TG) content in 3T3-L1 adipocytes (EC50 ≈ 25 µM). Here, we synthesized two series of compounds by introducing amine side chains at the 5 or 8 position of 1 and evaluated the lipid-lowering activity of derivatives. It was found that some of the compounds had significant lipid-lowering effects, and the most active compound 3d showed better activity (EC50 = 0.017 µM) than 2 (EC50 = 0.086 µM), a compound reported by us. Further, the mechanism studies revealed that 3d blocked TG accumulation via activation of the LKB1-AMPK signaling pathway, efficiently down-regulating the expression of key regulators of adipogenesis/lipogenesis. Cell uptake assay and confocal imaging of 3d in cells indicated that compound 3d had favorable cell permeability. Our results suggest that 3d may be a promising agent for the treatment of obesity and related metabolic disorders.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Lipogênese/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Triglicerídeos/metabolismo , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/farmacocinética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colesterol/metabolismo , Células Hep G2 , Humanos , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/farmacocinética , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinas/síntese química , Quinazolinas/farmacocinética , Transdução de Sinais/efeitos dos fármacos
8.
Eur J Med Chem ; 92: 540-53, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25599951

RESUMO

A novel series of benzo[a]phenazin derivatives bearing alkylamino side chains were designed, synthesized and evaluated for their topoisomerases inhibitory activity as well as cytotoxicity against four human cancer cell lines (HL-60, K-562, HeLa, and A549). These compounds were found to be dual inhibitors of topoisomerase (Topo) I and Topo II, and exhibited excellent antiproliferative activity, in particular against HL-60 cells with submicromolar IC50 values. Further mechanistic studies showed that this class of compounds acted as Topo I poisons by stabilizing the Topo I-DNA cleavage complexes and Topo II catalytic inhibitors by inhibiting the ATPase activity of hTopo II. Molecular docking studies revealed the binding modes of these compounds for Topo I and Topo II.


Assuntos
Aminas/química , Desenho de Fármacos , Fenazinas/farmacologia , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HeLa , Humanos , Células K562 , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase II/síntese química
10.
Dalton Trans ; (5): 665-75, 2006 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-16429169

RESUMO

Using two 4-substitued triazole ligands, 4-(pyrid-2-yl)-1,2,4-triazole (L(1)) and 4-(pyrid-3-yl)-1,2,4-triazole (L(2)), a series of novel triazole-cadmium(II) complexes varying from zero- to three-dimensional have been prepared and their crystal structures determined via single-crystal X-ray diffraction. [Cd(2)(micro(2)-L(1))(3)(L(1))(2)(NO(3))(mu(2)-NO(3))(H(2)O)(2)](NO(3))(2).1.75H(2)O (1) is a binuclear complex containing bidendate, monodedate and free nitrate anions. When the bridging anions SCN(-) and dca (dca = N(CN)(2)(-)) were added to the reaction system of 1, one-dimensional (1D) [Cd(L(1))(2)(NCS)(2)](n) (2) and two-dimensional (2D) [Cd(L(1))(2)(dca)(2)](n) (3) were isolated, respectively. When L(2) instead of L(1) was used, [Cd(L(2))(2)(NCS)(2)(H(2)O)(2)] (4) and 1D [Cd(L(2))(2)(dca)(2)](n) (5) were obtained. When the ratio of Cd to L(2) was changed from 1:2 to 1:1 in the reaction system of 5, three-dimensional (3D) {[Cd(3)(micro(2)-L(2))(3)(dca)(6)].0.75H(2)O}(n) (6) with 1D microporous channels along the a direction was isolated. Further investigations on other Cd(ii) salts and the L(2) ligand in a Cd to L(2) ratio of 1:1, an unexpected complex [Cd(mu(2)-L(2))(mu(3)-SO(4))(H(2)O)](n) (7) with a 3D open framework was obtained. All of the complexes exhibit strong blue fluorescence emission bands in the solid state at ambient temperature, of which the excitation and emission maxima are red-shifted to longer wavelength as compared to those in water. Powder X-ray diffraction and thermal studies were used to investigate the bulk nature of the 3D coordination polymers 6 and 7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA