Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(2): 287-304, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464379

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose utilization in the brain, leading to oxidative stress, neuronal cell injury and infla-mmation. Previous studies have shown that duodenal jejunal bypass (DJB) surgery significantly improves brain glucose metabolism in T2DM rats, the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear. AIM: To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats. METHODS: A T2DM rat model was induced via a high-glucose and high-fat diet, combined with a low-dose streptozotocin injection. T2DM rats were divided into DJB operation and Sham operation groups. DJB surgical intervention was carried out on T2DM rats. The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis. Proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry, quantitative real-time PCR, Western blotting, and immunofluorescence. RESULTS: Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery, compared to the T2DM-Sham groups of rats. Oxidative stress-related proteins (glucagon-like peptide 1 receptor, Nrf2, and HO-1) were significantly increased (P < 0.05) in the hypothalamus of rats with T2DM after DJB surgery. DJB surgery significantly reduced (P < 0.05) hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin (IL)-1ß and IL-6. DJB surgery significantly reduced (P < 0.05) the expression of factors related to neuronal injury (glial fibrillary acidic protein and Caspase-3) in the hypothalamus of T2DM rats and upregulated (P < 0.05) the expression of neuroprotective factors (C-fos, Ki67, Bcl-2, and BDNF), thereby reducing hypothalamic injury in T2DM rats. CONCLUSION: DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.

2.
Obes Surg ; 30(1): 279-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605365

RESUMO

BACKGROUND: Duodenal-jejunal bypass (DJB) can dramatically improve type 2 diabetes independent of weight loss and food restriction. Increasing evidence has demonstrated that brain insulin signaling plays an important role in the pathophysiology of type 2 diabetes. This study explores whether the antidiabetic effect of DJB is involved in brain insulin signaling activation and brain glucose utilization. METHODS: A diabetic rat model was established by high-fat and high-glucose diet. DJB or sham surgery was performed in diabetic rats. 18F-FDG PET scanning was used to detect glucose uptake in different organs, particularly in the brain. The levels of glucose transporters, glucose utilization-related proteins (HK1 and PFK2), insulin, and insulin signaling pathway-related proteins (InsR, IRS1/2, PI3K, and p-Akt) in the brain tissues were evaluated and analyzed. RESULTS: The results showed that DJB significantly improved basal glycemic parameters and reversed the decreasing glucose uptake in the brains of type 2 diabetic rats. DJB significantly increased not only the expression levels of brain insulin, IRS1/2, PI3K, and p-Akt but also the levels of the glucose utilization enzymes HK1 and PFK2 in the brain. CONCLUSION: These results indicate that enhanced brain insulin signaling transduction and brain glucose utilization play important roles in the antidiabetic effect of DJB.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/cirurgia , Derivação Gástrica/métodos , Glucose/metabolismo , Insulina/metabolismo , Jejuno/cirurgia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Duodeno/patologia , Resistência à Insulina/fisiologia , Jejuno/patologia , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Resultado do Tratamento , Redução de Peso
3.
Biomed Pharmacother ; 97: 1131-1137, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29136951

RESUMO

Myricetin is a flavonoids compound extracted from edible myrica rubra. We aimed to evaluate the efficacy of Myricetin on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Myricetin was administrated by gavage for 4 consecutive weeks. Mice were sacrificed and the number of colonic polyps was counted. Myricetin significantly inhibited AOM/DSS-induced colitis and colorectal tumorigenesis. Myricetin prevented the incidence of colorectal tumorigenesis and reduced the size of colorectal polyps. Histopathologic analysis showed that Myricetin could attenuate the degree of colonic inflammation and colorectal tumorigenesis. Further analysis showed that Myricetin strongly reduced the levels of inflammatory factors TNF-α, IL-1ß, IL-6, NF-κB, p-NF-κB, cyclooxygenase-2 (COX-2), PCNA and Cyclin D1 in the colonic tissues as analyzed by the assays of immunohistochemical staining, Western blotting and Q-RT-PCR. Our results demonstrated that Myricetin possesses the biological activities of chemoprevention colonic chronic inflammation and inflammation-driven tumorigenesis. We suggest that Myricetin could be developed as a promising chemopreventive drug for reducing the risk of colorectal cancer.


Assuntos
Colite/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Western Blotting , Doença Crônica , Colite/complicações , Pólipos do Colo/prevenção & controle , Modelos Animais de Doenças , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Exp Cell Res ; 351(1): 36-42, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034674

RESUMO

Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model.


Assuntos
Benzamidas/farmacologia , Doença de Hirschsprung/metabolismo , Morfolinas/farmacologia , Células-Tronco Neurais/citologia , Agonistas do Receptor de Serotonina/farmacologia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Doença de Hirschsprung/patologia , Crista Neural/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Neurogênese , Ratos , Ratos Sprague-Dawley , Receptores 5-HT4 de Serotonina/metabolismo
5.
Neuroreport ; 27(11): 858-63, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27306591

RESUMO

Human enteric neural stem cells (hENSCs) proliferate and differentiate into neurons and glial cells in response to a complex network of neurotrophic factors to form the enteric nervous system. The primary aim of this study was to determine the effect of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) on in-vitro expansion and differentiation of postnatal hENSCs-containing enteric neurosphere cells. Enteric neurosphere cells were isolated from rectal polyp specimens of 75 children (age, 1-13 years) and conditioned with bFGF, EGF, bFGF+EGF, or plain culture media. Proliferation of enteric neurosphere cells was examined using the methyl thiazolyl tetrazolium colorimetric assay over 7 days of culture. Fetal bovine serum (10%) was added to induce the differentiation of parental enteric neurosphere cells, and differentiated offspring cells were immunophenotyped against p75 neutrophin receptor (neural stem cells), peripherin (neuronal cells), and glial fibrillary acidic protein (glial cells). Combining bFGF and EGF significantly improved the proliferation of enteric neurosphere cells compared with bFGF or EGF alone (both P<0.01) throughout 7 days of culture. The addition of bFGF drove a significantly greater proportion of enteric neurosphere cells to differentiate into neuronal cells than that of EGF (P<0.01), whereas addition of EGF resulted in significantly more glial differentiation compared with addition of bFGF (P<0.01). Combining bFGF and EGF drove enteric neurosphere cells to differentiate into neuronal cells in a proportion similar to glial cells. Our results showed that the combination of bFGF and EGF significantly enhanced the proliferation and differentiation of postnatal hENSCs-containing enteric neurosphere cells in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Entérico/citologia , Fator de Crescimento Epidérmico/farmacologia , Proteína Glial Fibrilar Ácida/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Adolescente , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Colorimetria , Feminino , Humanos , Lactente , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA