Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
ACS Nano ; 18(26): 16878-16894, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899978

RESUMO

Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Cálcio , Antígenos de Superfície da Hepatite B , Silício , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Silício/química , Camundongos , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/química , Cálcio/química , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Camundongos Endogâmicos C57BL , Feminino , Vacinas/imunologia , Vacinas/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Nanopartículas/química , Humanos , Óxido de Alumínio
2.
J Control Release ; 372: 482-493, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38914205

RESUMO

The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.

3.
Biomaterials ; 308: 122569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626556

RESUMO

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Óxido de Alumínio , Células Dendríticas , Antígenos de Superfície da Hepatite B , Nanopartículas , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos/farmacologia , Animais , Nanopartículas/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Citocinas/metabolismo , Compostos de Alúmen/química , Compostos de Alúmen/farmacologia
4.
Biomol Biomed ; 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613844

RESUMO

This study aims to evaluate the clinical diagnostic value of contrast-enhanced ultrasound combined with microflow imaging (CEUS-MFI) in the differential diagnosis of benign and malignant renal tumors. All patients underwent CEUS, MFI, color doppler flow imaging (CDFI), and CEUS-MFI. The efficacies of these different diagnostic modalities in diagnosing benign and malignant renal tumors were evaluated by Kappa consistency test and the receiver operating characteristic (ROC) curve, with pathological findings serving as the gold standard. CDFI, MFI and CEUS-MFI all demonstrated higher blood flow in malignant tumors compared with benign tumors. Compared with benign tumors, CDFI detected a higher rate of punctate and linear Adler grade 2 and 3 blood flows in malignant tumors, as well as peripheral semicircular or annular blood flow. MFI identified a high rate of peripheral circumferential blood flow and irregular vascular morphology in malignant tumors, with most exhibiting Adler grade 3 blood flow. In addition, CEUS-MFI showed more dendritic or irregular Adler grade 2 or 3 blood flows in malignant renal tumors than MFI alone. Further analysis showed that CEUS-MFI had the highest consistency with pathological diagnosis (Kappa = 0.808). The ROC curve showed that the area under the curve (AUC) for CEUS-MFI in differentiating between benign and malignant lesions was 0.898, significantly outperforming other single diagnostic methods. With its capability to display microvascular information and assess overall pathological characteristics, MFI can accurately predict the nature of renal tumors and assist in surgical planning.

5.
Biochem Biophys Rep ; 35: 101547, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37745985

RESUMO

The current study aimed to investigate the antitumor effects and potent mechanism of cytokine-induced killer (CIK) cells combined with irreversible electroporation (IRE) via Panc02 cell-bearing mouse model in vivo. CIK cells were isolated from the spleens of Panc02 pancreatic-cancer (PC) subcutaneous-xenograft model and the proportion of different lymphocytes was also determined. The antitumor effect of the combination of IRE and CIK cells in a PC subcutaneous-xenograft model was also investigated. The proportion of cells that were positive for CD3+CD8+ and the proportion of CD3+CD56+ cells were both significantly increased after 21 days of in vitro culture. Combined treatment of IRE and CIK cell significantly inhibited tumor growth and increased the survival rate of Panc02 cell-bearing mice. Furthermore, infiltration of lymphocytes into tumor tissue was significantly increased by this combination therapy compared with the untreated group or monotherapy group. In addition, IRE significantly enhanced the expression of chemokine receptors elicited by CIK cells. In conclusion, IRE combined with CIK cells showed superior antitumor efficacy in a PC xenograft model, which we attributed to the promotion of lymphocytic infiltration, as well as to upregulation of chemokine receptor expression and the regulators of CIK cell proliferation.

6.
PeerJ ; 11: e15388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283891

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) are increasingly being used in bone marrow transplantation (BMT) to enable homing of the allogeneic hematopoietic stem cells and suppress acute graft versus host disease (aGVHD). The aim of this study was to optimize the labelling of BMSCs with superparamagnetic iron oxide particles (SPIOs), and evaluate the impact of the SPIOs on the biological characteristics, gene expression profile and chemotaxis function of the BMSCs. The viability and proliferation rates of the SPIO-labeled BMSCs were analyzed by trypan blue staining and CCK-8 assay respectively, and the chemotaxis function was evaluated by the transwell assay. The expression levels of chemokine receptors were measured by RT-PCR and flow cytometry. The SPIOs had no effect on the viability of the BMSCs regardless of the labelling concentration and culture duration. The labelling rate of the cells was higher when cultured for 48 h with the SPIOs. Furthermore, cells labeled with 25 µg/ml SPIOs for 48 h had the highest proliferation rates, along with increased expression of chemokine receptor genes and proteins. However, there was no significant difference between the chemotaxis function of the labeled and unlabeled BMSCs. To summarize, labelling BMSCs with 25 µg/ml SPIOs for 48h did not affect their biological characteristics and chemotaxis function, which can be of significance for in vivo applications.


Assuntos
Nanopartículas de Magnetita , Quimiotaxia , Imageamento por Ressonância Magnética , Compostos Férricos
7.
Front Oncol ; 13: 1096453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910632

RESUMO

Background: Tumor invasiveness plays a key role in determining surgical strategy and patient prognosis in clinical practice. The study aimed to explore artificial-intelligence-based computed tomography (CT) histogram indicators significantly related to the invasion status of lung adenocarcinoma appearing as part-solid nodules (PSNs), and to construct radiomics models for prediction of tumor invasiveness. Methods: We identified surgically resected lung adenocarcinomas manifesting as PSNs in Peking University People's Hospital from January 2014 to October 2019. Tumors were categorized as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) by comprehensive pathological assessment. The whole cohort was randomly assigned into a training (70%, n=832) and a validation cohort (30%, n=356) to establish and validate the prediction model. An artificial-intelligence-based algorithm (InferRead CT Lung) was applied to extract CT histogram parameters for each pulmonary nodule. For feature selection, multivariate regression models were built to identify factors associated with tumor invasiveness. Logistic regression classifier was used for radiomics model building. The predictive performance of the model was then evaluated by ROC and calibration curves. Results: In total, 299 AIS/MIAs and 889 IACs were included. In the training cohort, multivariate logistic regression analysis demonstrated that age [odds ratio (OR), 1.020; 95% CI, 1.004-1.037; p=0.017], smoking history (OR, 1.846; 95% CI, 1.058-3.221; p=0.031), solid mean density (OR, 1.014; 95% CI, 1.004-1.024; p=0.008], solid volume (OR, 5.858; 95% CI, 1.259-27.247; p = 0.037), pleural retraction sign (OR, 3.179; 95% CI, 1.057-9.559; p = 0.039), variance (OR, 0.570; 95% CI, 0.399-0.813; p=0.002), and entropy (OR, 4.606; 95% CI, 2.750-7.717; p<0.001) were independent predictors for IAC. The areas under the curve (AUCs) in the training and validation cohorts indicated a better discriminative ability of the histogram model (AUC=0.892) compared with the clinical model (AUC=0.852) and integrated model (AUC=0.886). Conclusion: We developed an AI-based histogram model, which could reliably predict tumor invasiveness in lung adenocarcinoma manifesting as PSNs. This finding would provide promising value in guiding the precision management of PSNs in the daily practice.

8.
Front Oncol ; 12: 899722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081554

RESUMO

Pulsed field ablation can increase membrane permeability and is an emerging non-thermal ablation. While ablating tumor tissues, electrical pulses not only act on the membrane structure of cells to cause irreversible electroporation, but also convert tumors into an immune active state, increase the permeability of microvessels, inhibit the proliferation of pathological blood vessels, and soften the extracellular matrix thereby inhibiting infiltrative tumor growth. Electrical pulses can alter the tumor microenvironment, making the inhibitory effect on the tumor not limited to short-term killing, but mobilizing the collective immune system to inhibit tumor growth and invasion together.

9.
ACS Nano ; 16(7): 10482-10495, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35763693

RESUMO

Virus-like particles (VLPs) are self-assembled viral proteins that represent a superior form of antigens in vaccine formulations. To enhance immunogenicity, adjuvants, especially the aluminum salts (Alum), are essentially formulated in VLP vaccines. However, Alum only induce biased humoral immune responses that limits further applications of VLP-based vaccines. To stimulate more balanced immunity, we, herein, develop a one-step strategy of using VLPs as the biotemplates to synthesize raspberry-like silica-adjuvanted VLP@Silica nanovaccines. Hepatitis B surface antigen (HBsAg) VLPs and human papillomavirus type 18 (HPV 18) VLPs are selected as model templates. Circular dichroism (CD) and affinity analyses demonstrate that HBsAg VLPs in the nanovaccines maintain their secondary structure and immunogenicity, respectively. VLP@Silica promote silica dissolution-induced lysosomal escape and cytosolic delivery of antigens, and enhance the secretion of both Th1 and Th2 type cytokines in murine bone marrow-derived dendritic cells (BMDCs). Additionally, they could improve antigen trafficking and mediate DC activation in draining lymph nodes (DLNs). Vaccination study demonstrate that both HBsAg VLP@Silica and HPV 18 VLP@Silica nanovaccines induce enhanced antigen-specific antibody productions and T-cell mediated adaptive immune responses. This design strategy can utilize VLPs derived from a diversity of viruses or their variants as templates to construct both prophylactic and therapeutic vaccines with improved immunogenicity.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Humanos , Camundongos , Animais , Dióxido de Silício , Antígenos de Superfície da Hepatite B , Anticorpos Antivirais , Adjuvantes Imunológicos , Imunidade Celular
10.
Int J Nanomedicine ; 17: 821-836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228799

RESUMO

PURPOSE: To develop an iron-based solid lipid nanoparticle (SLN) absorbable by the intestinal wall and assess the differential diagnostic value of intestinal lesions in magnetic resonance imaging (MRI). METHODS: SLNs were prepared with the simultaneous loading of trivalent Fe ions (Fe3+), levodopa methyl ester (DM), and fluorescein isothiocyanate (FITC). We evaluated the particle size, loading rate, encapsulation efficiency, and cytotoxicity of SLNs. The T1 contrast effects of the FeDM-FITC-SLNs and gadolinium-based contrast agent (GBCA) were compared in different mouse models: acute ulcerative colitis (AUC), chronic ulcerative colitis (CUC), colon adenocarcinoma (COAD), and normal control. MRI was performed in the same mouse with intravenous injection of GBCA on day 1 and enema of FeDM-FITC-SLNs on day 2. The signal-to-noise ratios (SNRs) were compared using one-way analysis of variance. Tissues were then collected for histology. RESULTS: The average particle size of FeDM-FITC-SLN was 220 nm. The mean FeDM loading rate was 94.3%, and the encapsulation efficiency was 60.3%. The relaxivity was 4.02 mM-1·s-1. After enema with FeDM-FITC-SLNs, MRI showed the following contrast enhancement duration: AUC = COAD > normal > CUC. Confocal fluorescence microscopy confirmed that FeDM-FITC-SLNs were mainly distributed in the intestinal mucosa and tumor capsule. CONCLUSION: Iron-based SLNs are promising alternatives for contrast enhancement at T1-weighted MRI and will help in the differential diagnosis of intestinal bowel diseases (IBDs).


Assuntos
Ferro , Nanopartículas , Animais , Meios de Contraste , Lipossomos , Imageamento por Ressonância Magnética/métodos , Camundongos , Tamanho da Partícula
11.
Front Oncol ; 12: 838667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223520

RESUMO

Modern oncology increasingly relies on pathological, molecular, and genomic assessments of biopsied tumor tissue. However, the concern for bleeding complication and malignant seeding severely hinders the application of the biopsy tumor. Here, we developed a 16 G biopsy needle to contain two electrodes insulated from each other and connect to an radiofrequency generator. For evaluating hemostatic efficacy, 50 rabbits were randomly divided into two groups: warfarinization and non-warfarinization group. Two liver biopsies and two splenic biopsies per animal were performed using a 16 G biopsy needle. Each group was further equally divided into five groups according to different hemostatic measures, including non-intervention, embolization using an absorbable gelatin sponge, and ablation by RF with three different needle temperatures (50°C, 70°C, and 90°C). Than, we used VX2 rabbit models (n = 25) and applied the five analogous biopsies to the tumor. The flush fluid from the biopsy needle underwent cytomorphological analysis. Our results that the groups using ablation by RF showed significantly less blood loss than the control group for liver and spleen in both groups (P < 0.001). After RF ablation, thermal coagulation of the tissue surrounding the needle tract was observed on both the macroscopic and histological level. Cytological smears showed that tumor cells were degenerated after RF at 70°C and 90°C. Our findings showed that bipolar RF biopsy needle is a promising tool for reducing hemorrhage after biopsy and avoiding implanting tumor cells in the tract.

12.
Phytomedicine ; 96: 153847, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34836744

RESUMO

BACKGROUND: N-methyl-d-aspartate receptors (NMDARs) have been demonstrated to play central roles in stroke pathology and recovery, including dual roles in promoting either neuronal survival or death with their different subtypes and locations. PURPOSE: We have previously demonstrated that pseudoginsenoside-F11 (PF11) can provide long-term neuroprotective effects on transient and permanent ischemic stroke-induced neuronal damage. However, it is still needed to clarify whether NMDAR-2A (NR2A)-mediated pro-survival signaling pathway is involved in the beneficial effect of PF11 on permanent ischemic stroke. MATERIAL AND METHODS: PF11 was administrated in permanent middle cerebral artery occlusion (pMCAO)-operated rats. The effect of PF11 on oxygen-glucose deprivation (OGD)-exposed primary cultured neurons were further evaluated. The regulatory effect of PF11 on NR2A expression and the activation of its downstream AKT-CREB pathway were detected by Western blotting and immunofluorescence in the presence or absence of a specific NR2A antagonist NVP-AAM077 (NVP) both in vivo and in vitro. RESULTS: PF11 dose- and time-dependently decreased calpain1 (CAPN1) activity and its specific breakdown product α-Fodrin expression, while the expression of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKII-α) was significantly upregulated in the cortex and striatum of rats at 24 h after the onset of pMCAO operation. Moreover, PF11 prevented the downregulation of NR2A, p-AKT/AKT, and p-CREB/CREB in both in vivo and in vitro stroke models. Finally, the results indicated treatment with NVP can abolish the effects of PF11 on alleviating the ischemic injury and activating NR2A-mediated AKT-CREB signaling pathway. CONCLUSIONS: Our results demonstrate that PF11 can exert neuroprotective effects on ischemic stroke by inhibiting the activation of CAPN1 and subsequently enhancing the NR2A-medicated activation of AKT-CREB pathway, which provides a mechanistic link between the neuroprotective effect of PF11 against cerebral ischemia and NR2A-associated pro-survival signaling pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Isquemia Encefálica/tratamento farmacológico , Calpaína , Ginsenosídeos , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
13.
Carbohydr Polym ; 277: 118854, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893263

RESUMO

Sixteen oligosaccharide monomers with the degree of polymerization 3 to 18 (DP 3 to DP 18) and three active fractions (DP 3-9, DP 8-11, and DP 11-17) were separated from Atractylodes lancea (Thunb.) DC. by optimized fast protein liquid chromatography coupled with refractive index detector (FPLC-RID) and preparation hydrophilic interaction chromatography (Pre-HILIC). Gas chromatography-mass spectrometer (GC-MS), liquid chromatography tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and methylation analysis showed that the oligosaccharide in A. lancea was 1-kestose [ß-D-fructofuranosyl-(2 â†’ 1)-ß-D-fructofuranosyl-(2 â†’ 1)-α-D-glucopyranoside] (inulin-type fructooligosaccharides, FOS). Particularly, DP 3-9 showed the best capacity in stimulating phagocytic, NO, and cytokines production on RAW264.7 cells than any other purified oligosaccharide monomers and active fractions. It could also activate T-cells in Peyer's patch cells and enhance the production of colony stimulation factors. Besides, FPLC-RID showed a good capacity for large-scale preparation of DP 3-9 with the recovery of more than 93%. The bioactivity of sixteen FOS monomers (DP 3 to DP 18) and three FOS fractions (DP 3-9, DP 8-11, and DP 11-17) investigated in this study are beneficial for the utilization of FOS as a functional ingredient in novel product development.


Assuntos
Atractylodes/química , Oligossacarídeos/farmacologia , Animais , Lipopolissacarídeos/farmacologia , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Oligossacarídeos/síntese química , Oligossacarídeos/química , Células RAW 264.7
14.
Opt Express ; 29(22): 35678-35690, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808997

RESUMO

Plasmonic nanostructures with dual surface plasmon resonances capable of simultaneously realizing strong light confinement and efficient light radiation are attractive for light-matter interaction and nanoscale optical detection. Here, we propose an optical nanoantenna by adding gold nanoring to the conventional Fano-type resonance antenna. With the help of gold nanoring, the following improvements are simultaneously realized: (1). The near-field intensity of the Fano-type antenna is further enhanced by the Fabry Perot-like resonance formed by the combination of the gold nanoring and the substrate waveguide layer. (2). Directional radiation is realized by the collaboration of the gold nanoring and the Fano-type antenna, thus improving the collection efficiency of the far-field signal. (3). The multi-wavelength tunable performance of the Fano resonance antenna is significantly improved by replacing the superradiation mode in the Fano resonance with the dipole resonance induced by the gold nanoring. The optical properties of the nanoantennas are demonstrated by numerical simulations and practical devices. Therefore, the proposed optical nanoantenna provides a new idea for further improving the performance of conventional Fano-type nanoantennas and opens new horizons for designing plasmonic devices with enhancements in both near- and far-field functionalities, which can be applied in a wide range of applications such as surface-enhanced spectroscopy, photoluminescence, nonlinear nanomaterials/emitters and biomedicine sensing.

15.
Biomater Sci ; 9(24): 8189-8201, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34726680

RESUMO

Mitochondria are crucial metabolic organelles involved in tumorigenesis and tumor progression, and the induction of abnormal mitochondria metabolism is recognized as a strategy with strong potential for the exploration of advanced tumor therapeutics. Herein, hierarchical manganese silicate nanoclusters modified with triphenylphosphonium (MSNAs-TPP) were designed and synthesized for mitochondria-targeted tumor theranostics. The as-prepared MSNAs-TPP retains considerable dimensional and structural stability in the neutral physiological environment, favoring its accumulation at the tumor site. More interestingly, MSNAs-TPP may disassemble in a responsive manner to an acidic tumor microenvironment into ultrasmall manganese silicate nanocapsules (∼6 nm), enabling deep tumor penetration and mitochondria targeting. When reaching the mitochondria, the nanocapsules effectively deplete mitochondrial glutathione (GSH), and simultaneously release catalytic Mn2+ ions to induce amplified oxidative stress in the structure with the enriched CO2 and H2O2 from mitochondria metabolism. As a result, MSNAs-TPP presents considerable antitumor effect without a clear side effect, both in vitro and in vivo. The study may provide an alternative concept in the development of intelligent nanotherapeutics for tumor treatment with high efficacy.


Assuntos
Nanocápsulas , Neoplasias , Humanos , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Mitocôndrias , Neoplasias/tratamento farmacológico , Microambiente Tumoral
16.
Bioengineered ; 12(2): 9832-9846, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696663

RESUMO

We aim to evaluate the efficacies of combination therapy with low-frequency ultrasound-stimulated microbubbles (USMB) and radiofrequency ablation (RFA) on suppressing the proliferation of pancreatic cancer cell and treating Panc02 subcutaneous xenograft mice. The proliferation of HPDE6-C7 and Panc02 cells after the treatment of USMB and RFA alone or combination were evaluated by CCK-8 assay. Scratch test was performed to assess the cell migration capability. Panc02-bearing mice were received 14-day treatment of USMB and RFA alone or combination. Tumor size and survival rate were recorded once two days. The serum levels of immune-related factors and changes of apoptosis- and autophagy-related factors were detected by ELISA and western blotting methods. As a result, CKK-8 assays revealed significant inhibition on Panc02 cell proliferation in combination therapy with USMB and RFA relative to other groups (all p < 0.05). Strong synergistic effect of USMB combined with RFA was confirmed via the calculated combination index (CI) <0.4. In addition, combination therapy of USMB and RFA significantly inhibited the migration of Panc02 cells. Moreover, combined treatment remarkably inhibited the size and width of xenograft and improved the survival in Panc02-bearing mice. Furthermore, 14-day combination therapy of USMB and RFA in Panc02-bearing mice significantly facilitated the apoptosis and autophagy of tumor cells. In summary, combination therapy of USMB and RFA showed synergistic anti-tumor efficacies on Panc02 cells attributing to the promotion on apoptosis and autophagy in Panc02 subcutaneous xenograft mice.


Assuntos
Neoplasias Experimentais/terapia , Neoplasias Pancreáticas/terapia , Ablação por Radiofrequência , Terapia por Ultrassom , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo
17.
Theranostics ; 11(18): 8909-8925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522218

RESUMO

Rationale: The synergism of new modalities alongside chemodynamic therapy into common chemotherapy has shown promising potential in clinical applications. This paper reports a tumor microenvironment-responsive nanosystem for chemodynamic/chemical synergistic therapy and magnetic resonance imaging (MRI). Methods: The biodegradable nanosystem is synthesized using a surface-modified chain transfer agent for surface-initiated living radical polymerization of the chemotherapeutic drug. Results: In this nanosystem, named CAMNSN@PSN38, the cycling time and solubility of the chemotherapeutic drug are improved. The nanoparticles delivered to tumor tissues gradually release the chemotherapeutic drug and Mn2+ through glutathione (GSH)-triggered biodegradation in the tumor microenvironment. SN38, the released chemotherapeutic drug, not only shows excellent chemical therapy effects but also improves the generation of H2O2. Furthermore, with the Fenton-like agent Mn2+, the generation of reactive oxygen species (ROS) is improved markedly. Finally, CAMNSN@PSN38 shows excellent inhibition of tumor growth in three colorectal cancer tumor models, with an improved accumulation of ROS and controlled release of SN38. Conclusions: The CAMNSN@PSN38-mediated chemodynamic/chemical synergistic therapy provides a promising paradigm for the treatment and MRI-guided therapy of colorectal cancer.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , China , Neoplasias Colorretais/tratamento farmacológico , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Peróxido de Hidrogênio/farmacologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int Immunopharmacol ; 99: 107896, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34246061

RESUMO

The polarization of microglia/macrophages after cerebral ischemia is critical for post-stroke damage/recovery. Previously, we found that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, has neuroprotective effects on permanent and transient cerebral ischemia in rats. This study aimed to investigate the effects and potential mechanisms of PF11 on microglia/macrophage polarization following transient cerebral ischemia in rats. In vivo data showed that oral administration of PF11 (12 mg/kg) significantly attenuated cognitive deficits and sensorimotor dysfunction, infarct volume and brain edema in transient middle cerebral artery occlusion (tMCAO)-treated rats, as well as reduced the loss of neurons and the over-activation of microglia in penumbra of ipsilateral striatum and cortex. Notably, the proportion of M2 microglia/macrophages in the total activated microglia/macrophages peaked on day 14 after tMCAO in rats, while PF11 promoted its peak advancing to day 3 post-tMCAO, which allowing the damaged brain to enter the repair period more quickly. Furthermore, PF11 increased the expression of anti-inflammatory markers and decreased the expression of pro-inflammatory markers in ipsilateral striatum and cortex. In addition, in vitro data showed that PF11 inhibited the induction of M1 microglia by oxygen glucose deprivation/re-oxygenation (OGD/R)-induced neurons, and promoted the polarization of microglia to M2 phenotype in a Jumonji domain-containing protein 3 (Jmjd3)-dependent manner. Moreover, PF11 promoted the protection of M2 microglia and attenuated the exacerbation of M1 microglia on OGD/R-induced neuronal damage. Taken together, these results indicate that PF11 protects ischemic neurons by promoting M2 microglia/macrophage polarization in a Jmjd3-dependent manner, ultimately facilitating the functional recovery following transient cerebral ischemia.


Assuntos
Ginsenosídeos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Ginsenosídeos/farmacologia , Glucose/deficiência , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/imunologia , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/imunologia , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley
19.
Int J Hyperthermia ; 38(1): 985-994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34167430

RESUMO

OBJECTIVE: To explore independent risk factors for incomplete radiofrequency ablation (iRFA) of colorectal cancer liver metastases (CRLM) and evaluate adverse outcomes following iRFA. MATERIALS AND METHODS: Magnetic resonance imaging data of CRLM patients who received percutaneous RFA were randomized into training (70%) and validation set 1 (30%) data sets. An independent validation set 2 was derived from computed tomography scans. Uni- and multivariate analyses identified independent risk factors for iRFA. Area under the curve (AUC) values were used to evaluate the predictive model performance. Risk points were assigned to independent predictors, and iRFA was predicted according to the total risk score. Kaplan-Meier curves were used to assess new intrahepatic metastases (NIHM), unablated tumor progression, and overall survival (OS). RESULTS: Multivariate regression determined as independent iRFA risk factors perivascular tumor location, subcapsular tumor location, tumor size ≥20 mm, and minimal ablative margin ≤5 mm. The AUC values of the model in the training set, validation set 1, and validation set 2 were 0.867, 0.772, and 0.820, respectively. The respective AUC values of the total risk score were 0.864, 0.768, and 0.817. During the 6-year follow-up, the cumulative OS was significantly shorter in the iRFA than in the complete RFA group, and NIHM (hazard ratio [HR] = 2.79; 95% confidence interval [CI]: 1.725, 4.513) and unablated tumor progression (HR = 3.473; 95% CI: 1.506, 8.007) were more severe. CONCLUSIONS: Perivascular tumor location, subcapsular tumor location, tumor size ≥20 mm, and minimal ablative margin ≤5 mm were independent risk factors for iRFA. iRFA may be a potential predictor of NIHM, unablated tumor progression, and OS.


Assuntos
Ablação por Cateter , Neoplasias Colorretais , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
20.
Life Sci ; 269: 119038, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453239

RESUMO

OBJECTIVE: Glucose-dependent insulinotropic polypeptide receptor (GIPR) has been identified as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). Therefore, we developed the anti-GIPR antagonistic monoclonal antibody (mAb) alone and in combination with DPP-4 inhibitor as potential therapeutic strategy for treating obesity and dyslipidemia based on this genetic evidence. METHODS: Fully neutralized GIPR activity of GIPR-monoclonal antibody (mAb) was assessed by regulating the in vitro production of cAMP in the mouse GIPR stably expressing cells. Chronic efficacies of GIPR-mAb alone and in combination with DPP-4 inhibitor Sitagliptin in diabetic or DIO mice were both investigated. Multiple metabolic parameters including body weight, glucose level, fat mass, lipid metabolism-related indicators as well as H&E staining and immunohistochemical analysis were performed. Role of GIPR in pancreatic cells on regulating fat metabolism was explored in GIPR ß-cell knockout mouse model. RESULTS: Chronic treatment of GIPR-mAb improved body weight control, glucose metabolism, and was associated with reduced fat mass, enhanced pancreatic function and exchange ratio of the resting respiratory in diabetic mice. In addition, further study of anti-GIPR mAb combined with Sitagliptin in DIO mice demonstrated significantly improved weight loss compare to the both monomer treatment. Furthermore, we demonstrated important role of GIPR in ß-cell in regulating the fat mass and response to antagonistic GIPR-mAb in a conditional GIPR-knockout mouse. CONCLUSION: Chronic treatment with anti-GIPR mAb alone and combined with DPP-4 inhibitor provide preclinical therapeutic approaches to treat obesity.


Assuntos
Anticorpos Monoclonais/farmacologia , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dislipidemias/tratamento farmacológico , Nefropatias/tratamento farmacológico , Obesidade/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Quimioterapia Combinada , Dislipidemias/etiologia , Dislipidemias/patologia , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Receptores dos Hormônios Gastrointestinais/imunologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA