Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Phytomedicine ; 125: 155269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237510

RESUMO

BACKGROUND: Energy deficiency is the characteristic of chemotherapy-induced cachexia (CIC) which is manifested by muscle wasting. glycolysis, tricarboxylic acid (TCA) cycle, and lipid metabolism are central to muscle bioenergy production, which is vulnerable to chemotherapy during cancer treatment. Recent investigations have spotlighted the potential of Shenqi Fuzheng injection (SQ), a Chinese proprietary medicine comprising Radix Codonopsis and Radix Astragali, in alleviating CIC. However, the specific effects of SQ on muscle energy metabolism remains less explored. PURPOSE AND METHODS: Here, we integrated transcriptomics, spatial metabolomics, gas chromatography-mass spectrometry targeted quantitative analysis, and transmission electron microscopy techniques, combined with Seahorse live-cell metabolic analysis to reveal the changes in genes and pathways related to energy metabolism in the CIC model and SQ's protective effects at molecular and functional levels. RESULTS: Our data showed that chemotherapeutic agents caused glycolysis imbalance, which further leads to metabolic derangements of TCA cycle intermediates. SQ maintained glycolysis balance by facilitating pyruvate fluxing to mitochondria for more efficient bioenergy production, which involved a dual effect on promoting functions of mitochondrial pyruvate dehydrogenase complexes and inhibiting lactate dehydrogenase for lactate production. As a result of the sustained pyruvate level achieved by SQ administration, glycolysis balance was maintained, which further led to the preservation of mitochondrial integrity and function of electron transport chain, thereby, ensuring the normal operation of the TCA cycle and the proper synthesis of adenosine triphosphate (ATP). The above results were further validated using the Seahorse live-cell assay. CONCLUSION: In conclusion, our study highlights SQ as a promising strategy for CIC management, emphasizing its ability to harmonize the homeostasis of the muscle bioenergetic profile. Beyond its therapeutic implications, this study also offers a novel perspective for the development of innovative treatments in the realm of herbal medicine.


Assuntos
Antineoplásicos , Caquexia , Medicamentos de Ervas Chinesas , Camundongos , Animais , Caquexia/induzido quimicamente , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Piruvatos/metabolismo
3.
Cell Death Dis ; 14(8): 499, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542062

RESUMO

Pancreatic cancer is a highly aggressive cancer, and is primarily treated with gemcitabine, with increasing resistance. SIRT6 as a member of sirtuin family plays important roles in lifespan and diverse diseases, such as cancer, diabetes, inflammation and neurodegenerative diseases. Considering the role of SIRT6 in the cytoprotective effect, it might be a potential anticancer drug target, and is associated with resistance to anticancer therapy. However, very few SIRT6 inhibitors have been reported. Here, we reported the discovery of a pyrrole-pyridinimidazole derivative, 8a, as a new non-competitive SIRT6 inhibitor, and studied its roles and mechanisms in the antitumor activity and sensitization of pancreatic cancer to gemcitabine. Firstly, we found a potent SIRT6 inhibitor compound 8a by virtual screening and identified by molecular and cellular SIRT6 activity assays. 8a could effectively inhibit SIRT6 deacetylation activity with IC50 values of 7.46 ± 0.79 µM in FLUOR DE LYS assay, and 8a significantly increased the acetylation levels of H3 in cells. Then, we found that 8a could inhibit the cell proliferation and induce cell apoptosis in pancreatic cancer cells. We further demonstrate that 8a sensitize pancreatic cancer cells to gemcitabine via reversing the activation of PI3K/AKT/mTOR and ERK signaling pathways induced by gemcitabine and blocking the DNA damage repair pathway. Moreover, combination of 8a and gemcitabine induces cooperative antitumor activity in pancreatic cancer xenograft model in vivo. Overall, we demonstrate that 8a, a novel SIRT6 inhibitor, could be a promising potential drug candidate for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Sirtuínas , Humanos , Apoptose , Linhagem Celular Tumoral , Gencitabina , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Pirróis/farmacologia , Pirróis/uso terapêutico , Sirtuínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA