Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893471

RESUMO

Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.


Assuntos
Proteômica , Reishi , Triterpenos , Reishi/metabolismo , Reishi/crescimento & desenvolvimento , Reishi/química , Triterpenos/metabolismo , Triterpenos/química , Proteômica/métodos , Metabolômica/métodos , Proteínas Fúngicas/metabolismo
2.
Science ; 384(6701): 1196-1202, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870301

RESUMO

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Edição de Genes , Lipossomos , Pulmão , Nanopartículas , Células-Tronco , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Fibrose Cística/terapia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Terapia Genética/métodos , Pulmão/metabolismo , Organoides , Células-Tronco/metabolismo
3.
J Hazard Mater ; 472: 134611, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754230

RESUMO

Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.


Assuntos
Cádmio , Fritillaria , Fritillaria/genética , Fritillaria/metabolismo , Cádmio/toxicidade , Tibet , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Multiômica
4.
Commun Biol ; 7(1): 394, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561421

RESUMO

Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.


Assuntos
Diagnóstico por Imagem , Técnicas Genéticas , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Corantes , Mamíferos/genética
5.
Postgrad Med J ; 100(1183): 319-326, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38272486

RESUMO

BACKGROUND: The evaluation of patients with fatty liver as defined by metabolic dysfunction-associated fatty liver disease (MAFLD) in the real world remains poorly researched. This study aimed to analyse the clinical and histological features of patients with MAFLD and nonalcoholic fatty liver disease (NAFLD) and to characterize each metabolic subgroup of MAFLD. METHODS: A total of 2563 patients with fatty liver confirmed by ultrasonography and/or magnetic resonance tomography and/or liver biopsy-proven from three hospitals in China were included in the study. Patients were divided into different groups according to diagnostic criteria for MAFLD and NAFLD, and MAFLD into different subgroups. RESULTS: There were 2337 (91.2%) patients fitting the MAFLD criteria, and 2095 (81.7%) fitting the NAFLD criteria. Compared to patients with NAFLD, those with MAFLD were more likely to be male, had more metabolic traits, higher liver enzyme levels, and noninvasive fibrosis scores. Among the patients with liver biopsy, the extent of advanced fibrosis in cases with MAFLD was significantly higher than those with NAFLD, 31.8% versus 5.2% (P < .001); there was no significant difference in advanced fibrosis between obese cases and lean individuals in MAFLD (P > .05); MAFLD complicated with diabetes had significantly higher advanced fibrosis than those without diabetes (43.3% and 17.2%, respectively; P < .001). CONCLUSIONS: Patients with MAFLD have a higher degree of liver fibrosis than NAFLD patients. In addition, diabetic patients should be screened for fatty liver and liver fibrosis degree.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Feminino , Estudos Transversais , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Pessoa de Meia-Idade , China/epidemiologia , Biópsia , Adulto , Fígado Gorduroso/patologia , Cirrose Hepática/patologia , Ultrassonografia , Fígado/patologia , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
Diabetes Obes Metab ; 26(2): 548-556, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37860884

RESUMO

AIMS: To evaluate the impact of a dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide (TZP), and its potential dose-response effect, on heart rate. METHODS: Articles were searched from PubMed, Web of Science, Embase, Cochrane Library, and clinical trials registries (ClinicalTrials.gov) databases. Randomized controlled trials (RCTs) comparing TZP at doses of 5, 10 and 15 mg in adults with type 2 diabetes were included. Six study arms were summarized from original research (TZP 5, 10 and 15 mg, GLP-1 receptor agonists [GLP-1RAs], insulin, placebo). The GLP-1RA and non-GLP-1RA groups were combined to form a control group. Two reviewers independently extracted data and assessed the quality of each study. Mean differences (MDs) were calculated as effect estimates for continuous outcomes. Pairwise meta-analyses and network meta-analyses were conducted. The study protocol was prospectively registered (PROSPERO ID: CRD42023418551). RESULTS: Eight articles were included in this systematic review and meta-analysis. The mean baseline heart rate ranged from 65.2 to 75.7 beats per minute. Pairwise meta-analysis showed that, compared with combined the control group, there were significantly greater increases in heart rates in the TZP group (MD 1.82, 95% confidence interval [CI] 0.75, 2.89). Similar significant rises were identified when comparing TZP with GLP-1RAs and non-GLP-1RAs (GLP-1 RAs: MD 2.29, 95% CI 1.00, 3.59; non-GLP-1RAs: MD 1.58, 95% CI 0.26, 2.91). TZP 5 mg was associated with smaller increases in heart rates compared to TZP 10 mg and TZP 15 mg (TZP 10 mg: MD -0.97, 95% CI -1.79, -0.14; TZP 15 mg: MD -2.57, 95% CI -3.79, -1.35). TZP 10 mg increased heart rate less than TZP 15 mg (MD -1.5, 95% CI -2.38, -0.82). Network meta-analysis indicated that TZP 15 mg was associated with significant increases in heart rate compared with TZP 5 mg (MD 2.53, 95% CI 1.43, 3.62), TZP 10 mg (MD 1.44, 95% CI 0.35, 2.53), GLP-1RAs (MD 3.46, 95% CI 1.67, 5.25), insulin (MD 2.86, 95% CI 1.32, 4.41) and placebo (MD 2.96, 95% CI 1.36, 4.57). CONCLUSIONS: Our study showed not only that there was a greater increase in heart rate in the TZP group than in the control, GLP-1RA and non-GLP-1RA groups, but also that the 15-mg dose of TZP had the strongest impact on increasing heart rates compared with the other five inventions, with a TZP dose-response impact on heart rate. Further research on the effects of TZP treatment-related increases in heart rate is required.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Inibidor Gástrico , Adulto , Humanos , Diabetes Mellitus Tipo 2/complicações , Polipeptídeo Inibidor Gástrico/agonistas , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Insulina/uso terapêutico , Metanálise em Rede
7.
Nat Commun ; 14(1): 7322, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951948

RESUMO

Approximately 10% of Cystic Fibrosis (CF) patients, particularly those with CF transmembrane conductance regulator (CFTR) gene nonsense mutations, lack effective treatments. The potential of gene correction therapy through delivery of the CRISPR/Cas system to CF-relevant organs/cells is hindered by the lack of efficient genome editor delivery carriers. Herein, we report improved Lung Selective Organ Targeting Lipid Nanoparticles (SORT LNPs) for efficient delivery of Cas9 mRNA, sgRNA, and donor ssDNA templates, enabling precise homology-directed repair-mediated gene correction in CF models. Optimized Lung SORT LNPs deliver mRNA to lung basal cells in Ai9 reporter mice. SORT LNP treatment successfully corrected the CFTR mutations in homozygous G542X mice and in patient-derived human bronchial epithelial cells with homozygous F508del mutations, leading to the restoration of CFTR protein expression and chloride transport function. This proof-of-concept study will contribute to accelerating the clinical development of mRNA LNPs for CF treatment through CRISPR/Cas gene correction.


Assuntos
Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/terapia , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
8.
Cell Mol Immunol ; 20(11): 1367-1378, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821621

RESUMO

Macrophages are highly plastic cells that differentially regulate multiple pathological conditions, including cancer and autoimmune diseases. In response to various stimuli, macrophages activate different intrinsic signaling pathways and polarize into distinct macrophage subsets. We aimed to identify key new effectors that could control macrophage polarization and impact the development of cancer or colitis. Following treatment with the supernatants of tumor cells, macrophages showed an upregulation in Fbxo38 expression. Subsequently, we further identified that FBXO38 promotes macrophage immunosuppressive function by upregulating the expression of M2-like genes via MAPK and IRF4 signaling without affecting M1-like macrophage polarization. Deletion of Fbxo38 in macrophages was found to block tumor development and protect against DSS-induced colitis. Considering the distinct regulation of tumor development by FBXO38 in T cells and macrophages, we suggest that a comprehensive understanding of FBXO38 function in different cell types is critical for its further translational usage.


Assuntos
Colite , Neoplasias , Humanos , Colite/induzido quimicamente , Colite/metabolismo , Macrófagos , Transdução de Sinais , Neoplasias/metabolismo
9.
BMC Med Genomics ; 16(1): 211, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674210

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent tumor that poses a significant threat to human health, with 80% of cases being primary HCC. At present, Early diagnosis and predict prognosis of HCC is challenging and the it is characterized by a high degree of invasiveness, both of which negatively impact patient prognosis. Natural killer cells (NK) play an important role in the development, diagnosis and prognosis of malignant tumors. The potential of NK cell-related genes for evaluating the prognosis of patients with hepatocellular carcinoma remains unexplored. This study aims to address this gap by investigating the association between NK cell-related genes and the prognosis of HCC patients, with the goal of developing a reliable model that can provide novel insights into evaluating the immunotherapy response and prognosis of these patients. This work has the potential to significantly advance our understanding of the complex interplay between immune cells and tumors, and may ultimately lead to improved clinical outcomes for HCC patients. METHODS: For this study, we employed transcriptome expression data from the hepatocellular carcinoma cancer genome map (TCGA-LIHC) to develop a model consisting of NK cell-related genes. To construct the NK cell-related signature (NKRLSig), we utilized a combination of univariate COX regression, Area Under Curve (AUC) LASSO COX regression, and multivariate COX regression. To validate the model, we conducted external validation using the GSE14520 cohort. RESULTS: We developed a prognostic model based on 5-NKRLSig (IL18RAP, CHP1, VAMP2, PIC3R1, PRKCD), which divided patients into high- and low-risk groups based on their risk score. The high-risk group was associated with a poor prognosis, and the risk score had good predictive ability across all clinical subgroups. The risk score and stage were found to be independent prognostic indicators for HCC patients when clinical factors were taken into account. We further created a nomogram incorporating the 5-NKRLSig and clinicopathological characteristics, which revealed that patients in the low-risk group had a better prognosis. Moreover, our analysis of immunotherapy and chemotherapy response indicated that patients in the low-risk group were more responsive to immunotherapy. CONCLUSION: The model that we developed not only sheds light on the regulatory mechanism of NK cell-related genes in HCC, but also has the potential to advance our understanding of immunotherapy for HCC. With its strong predictive capacity, our model may prove useful in evaluating the prognosis of patients and guiding clinical decision-making for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Fatores de Risco , Células Matadoras Naturais
10.
Mol Biotechnol ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608077

RESUMO

This study aimed to explore the role of plasma methylated SEPT9 (mSEPT9) in predicting liver metastasis (LM) in colorectal cancer (CRC) patients. The clinicopathological information of 115 consecutive CRC patients were collected. The differences of clinical characteristics and several biomarkers between CRC patients with LM and those with non-liver metastasis (NM) were analyzed. Multivariate logistic regression analysis was used to identify the risk factors for predicting LM in CRC patients. Receiver operating characteristic curve (ROC) analysis was applied to investigate the sensitivity and specificity of potential biomarkers in indicating the presence of LM in CRC. Compared with the CRC without LM, the levels of plasma mSEPT9 and carcinoembryonic antigen (CEA) were significantly increased in CRC with LM. Multivariate logistic regression analysis showed that plasma mSEPT9 was an independent risk factor for predicting LM in CRC. ROC curves showed that mSEPT9 and CEA could efficiently distinguish LM from NM in CRC. The area under the curve (AUC) of mSEPT9 was 0.850, which was slightly higher than that of CEA (0.842). The optimal cut-off value of mSEPT9 was 35.09 with a sensitivity of 81.82% and a specificity of 73.33%, both similar with that of CEA (sensitivity 87.27% and specificity 75.00%). In addition, the combination of mSEPT9 and CEA had a higher specificity than CEA alone (81.70% Vs 75.00%). Our findings suggest, for the first time, that plasma mSEPT9 might serve as a potential biomarker to predict LM in CRC, which deserves further in-depth study.

11.
Pest Manag Sci ; 79(10): 4034-4047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287215

RESUMO

BACKGROUND: Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS: Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION: Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.


Assuntos
Formigas , Hemípteros , Animais , Hibridização in Situ Fluorescente , Hemípteros/fisiologia , Herbivoria , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Antibacterianos/farmacologia , Formigas/metabolismo , Bactérias , Enterobacteriaceae/metabolismo
12.
Int Immunopharmacol ; 117: 109730, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36878047

RESUMO

Glycolysis-mediated macrophage polarization plays a crucial role in atherosclerosis. Although it is known that calenduloside E (CE) exerts anti-inflammatory and lipid-lowering effects in atherosclerosis, the underlying mechanism of action is not clearly understood. We hypothesized that CE functions by inhibiting M1 macrophage polarization via regulation of glycolysis. To verify this hypothesis, we determined the effects of CE in apolipoprotein E deficient (ApoE-/-) mice and on macrophage polarization in oxidized low-density lipoprotein (ox-LDL)-induced RAW 264.7 macrophages and peritoneal macrophages. We also determined whether these effects are linked to regulation of glycolysis both in vivo and in vitro. The plaque size was reduced, and serum cytokine levels were decreased in the ApoE-/- +CE group compared with that in the model group. CE decreased lipid droplet formation, inflammatory factor levels, and mRNA levels of M1 macrophage markers in ox-ldl-induced macrophages. CE suppressed ox-ldl-induced glycolysis, lactate levels, and glucose uptake. The relationship between glycolysis and M1 macrophage polarization was demonstrated using the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one. CE substantially upregulated ox-ldl-induced Kruppel-like transcription factor (KLF2) expression, and the effects of CE on ox-ldl-induced glycolysis and inflammatory factor levels disappeared after KLF2 knockdown. Together, our findings suggest that CE alleviates atherosclerosis by inhibiting glycolysis-mediated M1 macrophage polarization through upregulation of KLF2 expression, providing a new strategy for the treatment of atherosclerosis.


Assuntos
Aterosclerose , Camundongos , Animais , Aterosclerose/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Apolipoproteínas E/metabolismo , Glicólise , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
13.
J Leukoc Biol ; 113(2): 139-148, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822177

RESUMO

Macrophages are strategically located throughout the body at key sites in the immune system. A key feature in atherosclerosis is the uptake and accumulation of lipoproteins by arterial macrophages, leading to the formation of foam cells. After myocardial infarction, macrophages derived from monocytes infiltrate the infarcted heart. Macrophages are also closely related to adverse remodeling after heart failure. An in-depth understanding of the functions and characteristics of macrophages is required to study heart health and pathophysiological processes; however, the heterogeneity and plasticity explained by the classic M1/M2 macrophage paradigm are too limited. Single-cell sequencing is a high-throughput sequencing technique that enables the sequencing of the genome or transcriptome of a single cell. It effectively complements the heterogeneity of gene expression in a single cell that is ignored by conventional sequencing and can give valuable insights into the development of complex diseases. In the present review, we summarize the available research on the application of single-cell transcriptome sequencing to study the changes in macrophages during common cardiovascular diseases, such as atherosclerosis, myocardial infarction, and heart failure. This article also discusses the contribution of this knowledge to understanding the pathogenesis, development, diagnosis, and treatment of heart diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Doenças Cardiovasculares/metabolismo , Transcriptoma , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Aterosclerose/patologia
14.
Diabetol Metab Syndr ; 15(1): 6, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647090

RESUMO

BACKGROUND: Experimental and epidemiological studies have indicated an association between diabetes exposure and an increased risk of liver cancer due to nonalcoholic steatohepatitis (NASH). However, to date, no systematic study has specifically investigated the burden of NASH-related liver cancer due to exposure to high fasting plasma glucose (HFPG) levels worldwide. METHODS: The number and rate of deaths and disability-adjusted life years (DALYs) from HFPG-induced NASH-related liver cancer were estimated based on the results of the 2019 Global Burden of Disease Study. The estimated annual percentage changes (EAPCs) for age-standardized death or DALYs rates were calculated using a generalized linear model with a Gaussian distribution to quantify the temporal trends in the global burden of NASH-related liver cancer attributable to HFPG. The strength and direction of the association between the sociodemographic index (SDI) and death or DALY rate were measured using Spearman's rank-order correlation. RESULTS: Globally, approximately 7.59% of all DALY and 8.76% of all mortalities of NASH-related liver cancer in 2019 were due to HFPG. The age-standardized death and DALY rates of NASH-related liver cancer attributable to HFPG increased from 1990 to 2019. The corresponding EAPCs were 0.69 (95% UI 0.48-0.89), and 0.30 (95% UI 0.05-0.56), respectively. This increasing pattern was most obvious in the high- and low-SDI regions. The age-standardized mortality and DALYs rate of NASH-related liver cancer attributable to HFPG varies considerably worldwide, with the middle SDI region having the highest death and DALY rates in 2019 (DALY 0.96 [95% UI 0.23-2.18]; death 0.05 [95% UI 0.01-0.11]). CONCLUSION: The burden of NASH-related liver cancer attributable to HFPG has increased over the past three decades, particularly in regions with high and low SDI.

15.
ACS Appl Mater Interfaces ; 15(3): 4303-4314, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631294

RESUMO

Herbicides are widely used in modern agricultural production for their advantages of high efficiency, convenience, and speed. However, there have been many problems caused by herbicide formulations, such as volatilization, leaching, and rain-washing loss in the process of agricultural application. Self-assembled nanotechnology is a promising strategy to solve these existing problems due to the environmentally friendly preparation process and high delivery efficiency. In this study, the stable fluorescent nanoparticles (AP NPs) based on co-assembly of acifluorfen (ACI) and poly(salicylic acid) (PSA) are constructed by using non-covalent bond interactions. The results indicate that the obtained nanoparticles with a stable fluorescence characteristic show improved physiochemical properties, such as uniform morphology, good thermal stability, low surface tension, and high retention on plants. The co-assembly can produce singlet oxygen to enhance the herbicidal activity under irradiation of light and reduce the leaching property of ACI to minimize the adverse impact on the aquatic environment. The safety evaluation of soybean seedlings indicates that AP NPs have no damage to non-target plants. In summary, the co-assembled herbicidal nano-formulation composed of ACI and PSA has high bioactivity and low environmental risks, which can be widely used in agricultural production.


Assuntos
Herbicidas , Nanopartículas , Herbicidas/química , Ácido Salicílico , Nitrobenzoatos , Corantes , Nanopartículas/toxicidade , Nanopartículas/química
16.
Biosens Bioelectron ; 220: 114893, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423391

RESUMO

Despite the extensive investigation of the nanozymes exhibit their favorable performance compared to natural enzymes, nevertheless, the highly specific nanozyme still needs to be developed so that it can meet the requirements of exploring the mechanism as well as administration of related diseases and selective monitoring in biological system. In this study, self-assembled glutathione-Cu/Cu2O nanoparticles (GSH-Cu/Cu2O NPs) that exhibits specific ascorbic acid (AA) oxidase-like catalytic activity were constructed for AA-activated and H2O2-reinforced cancer cell proliferation inhibition and selective neurochemical monitoring. Cu/Cu2O NPs demonstrates effective AA oxidase-like activity and no common characteristics of other redox mimic enzymes often present in nanozyme. In particular, we found that the AA oxidase-like activity of GSH-Cu/Cu2O nanozyme was significantly improved by about 40% by improving the activation ability toward oxygen. The synthesized nanozyme can induce the generation of active oxygen by accelerating the oxidation of AA, which effectively suppresses the proliferation of cancer cells. We constructed an online electrochemical system (OECS) though loading nanozyme with enhanced ascorbate oxidase activity into a microreactor and setting it in the upstream of the detector. This GSH-Cu/Cu2O NPs-integrated microreactor can completely eliminate AA interference of the physical level toward 3,4-dihydroxy phenylacetic acid (DOPAC) electrochemical measurement, and the nanozyme-based OECS is able to continuously capture DOPAC alteration in rat brain acidosis model. Our findings may inspire rational design of nanozymes with high specificity as well as nanozyme-based selectivity solution for in vivo detection and show promising opportunities for their involvement in neurochemistry investigation.


Assuntos
Técnicas Biossensoriais , Neoplasias , Animais , Ratos , Ascorbato Oxidase , Ácido 3,4-Di-Hidroxifenilacético , Peróxido de Hidrogênio , Proliferação de Células , Ácido Ascórbico , Glutationa
18.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6613-6623, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212021

RESUMO

The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 µg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.


Assuntos
Pinellia , Plantas Medicinais , Pinellia/genética , Melhoramento Vegetal , Fenótipo , Uridina
19.
Front Endocrinol (Lausanne) ; 13: 1054046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568093

RESUMO

Background: Physical activity (PA) has been associated with decreased incidence of diabetes. However, few studies have evaluated the influence of occupational and domestic PA on the risk of diabetes with a long-term follow-up. We aimed to examine the association between occupational and domestic PA and the risk of diabetes in a long-term prospective cohort of Chinese adults. Methods: A total of 10,343 adults who were followed up in the China Health and Nutrition Survey from 1997 to 2015 were included in our analysis. Occupational and domestical PA were collected with detailed seven-day data and were converted into metabolic equivalents values. Total PA included occupational, domestic, transportation, and leisure time PA. Diabetes cases were identified by self-reported doctor/health professional diagnosis of diabetes, fasting blood glucose ≥7.0 mmol/L, and glycosylated hemoglobin (HbA1c) ≥6.5%. Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI). Results: During up to 18 years of follow-up (median 10 years), there were 575 diabetes cases documented. Occupational PA accounted for the majority of total PA (68%) in Chinese population, followed by domestic PA (25%). With adjustments for possible covariates, the highest quartiles of total PA (HR, 0.728 [95% CI, 0.570-0.929]) and occupational PA (HR, 0.765 [95% CI, 0.596-0.982]) were significantly associated with a lower risk of diabetes compared with lowest quartiles. The association between domestic PA and the risk of diabetes was insignificant (P >0.05). Conclusion: Higher levels of occupational PA were associated with a decreased risk of diabetes risk in the Chinese population. Domestic PA was not associated with the incidence of diabetes.


Assuntos
Diabetes Mellitus , Exercício Físico , Humanos , Adulto , Seguimentos , Estudos Prospectivos , Atividade Motora , Diabetes Mellitus/epidemiologia
20.
Analyst ; 147(18): 4055-4062, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35968779

RESUMO

Cell mechanotransduction plays an important role in vascular regulation and disease development. Excessive accumulation of ROS, especially superoxide anion radicals (O2˙-), is closely related to cardiovascular diseases. Lately, NADPH oxidases, which are the major source of O2˙- production in vascular tissues, have been demonstrated to be involved in cardiovascular diseases. Therefore, in situ and real-time monitoring of superoxide anions (O2˙-) is essential for exploring the mechanisms of mechanotransduction associated with NADPH oxidase function in living cells. Here we report a rationally designed ultrasonication-assisted approach for growing Au nanoflower films on a flexible surface, which serves as the desired interface for cysteine and superoxide dismutase (SOD) anchoring to form a flexible and stretchable electrode (SOD/Cys/Au SE). The SOD/Cys/Au SE shows good stretchability, fast electron-transfer rates, and high selectivity to measure O2˙- released from cells during the stretching states. Our strategy provides a basis for developing more sophisticated stretchable biosensing tools to induce and monitor transient biochemical signals during cell mechanotransduction.


Assuntos
Técnicas Biossensoriais , Doenças Cardiovasculares , Humanos , Mecanotransdução Celular , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA