Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Environ Sci Technol ; 58(37): 16282-16290, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39236339

RESUMO

To assess the ecological risk of microplastics (MPs) in agricultural systems, it is critical to simultaneously focus on MP-mediated single-organism response and different trophic-level organism interaction. Herein, we placed earthworms in soils contaminated with different concentrations (0.02% and 0.2% w/w) of polyethylene (PE) and polypropylene (PP) MPs to investigate the effect of earthworms on tomato against Helicoverpa armigera (H. armigera) under MPs stress. We found that earthworms alleviated the inhibitory effects of MPs stress on tomato growth and disrupted H. armigera growth. Compared to individual MPs exposure, earthworm incorporation significantly increased the silicon and lignin content in herbivore-damaged tomato leaves by 19.1% and 57.6%, respectively. Metabolites involved in chemical defense (chlorogenic acid) and phytohormones (jasmonic acid) were also activated by earthworm incorporation. Furthermore, earthworms effectively reduced oxidative damage induced by H. armigera via promoting antioxidant metabolism. Overall, our results suggest that utilizing earthworms to regulate above- and below-ground interactions could be a promising strategy for promoting green agriculture.


Assuntos
Microplásticos , Oligoquetos , Animais , Oligoquetos/fisiologia , Produtos Agrícolas , Insetos , Poluentes do Solo , Solanum lycopersicum
2.
Endocrine ; 85(3): 1268-1277, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38564084

RESUMO

PURPOSE: The role of dual-specificity phosphatase-5 (DUSP5) in BRAF-mutant thyroid cancers remains unclear. The aims of this study are to investigate the role of DUSP5 in BRAF-mutant thyroid cancer cells, explore its value in the diagnosis and evaluate therapeutic potential of targeting DUSP5 combined with sorafenib for BRAF-mutant thyroid cancer patients. METHODS: The role of DUSP5 in thyroid cancer cells was determined by a series of in vitro and in vivo experiments. Underlying mechanisms were explored by western blotting analysis. The diagnostic value of combination detection of DUSP5 expression and BRAFV600E mutation was evaluated using ROC curve. RESULTS: Knocking down DUSP5 in BRAF-mutant thyroid cancer cells significantly inhibited colony formation, cell migration and invasion, meanwhile, induced cell cycle arrest and cell apoptosis. Moreover, inhibition of DUSP5 improved the anti-tumor efficacy of sorafenib both in vitro and in vivo. Besides, combination detection of DUSP5 expression and BRAFV600E mutation showed much more accuracy in preoperative diagnosis of thyroid cancer. CONCLUSIONS: Our data demonstrate an oncogenic role of DUSP5 in BRAF-mutant thyroid cancer cells, and combined analysis of its expression and BRAFV600E mutation can accurately diagnose thyroid cancer. In addition, inhibition of DUSP5 improves the response of BRAF-mutant thyroid cancer cells to sorafenib.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas B-raf , Sorafenibe , Neoplasias da Glândula Tireoide , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Animais , Mutação , Feminino , Masculino , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Proliferação de Células/efeitos dos fármacos , Fenótipo
3.
J Hazard Mater ; 465: 133417, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183945

RESUMO

The widespread presence of soil microplastics (MPs) has become a global environmental problem. MPs of different properties (i.e., types, sizes, and concentrations) are present in the environment, while studies about the impact of MPs having different properties are limited. Thus, this study investigated the effects of three common polymers (polystyrene, polyethylene, and polypropylene) with two concentrations (0.01% and 0.1% w/w) on growth and stress response of lettuce (Lactuca sativa L.), soil enzymes, and rhizosphere microbial community. Lettuce growth was inhibited under MPs treatments. Moreover, the antioxidant system, metabolism composition, and phyllosphere microbiome of lettuce leaves was also perturbed. MPs reduced phytase activity and significantly increased dehydrogenase activity. The diversity and structure of rhizosphere microbial community were disturbed by MPs and more sensitive to polystyrene microplastics (PSMPs) and polypropylene microplastics (PPMPs). In general, the results by partial least squares pathway models (PLS-PMs) showed that the presence of MPs influenced the soil-rhizosphere-plant system, which may have essential implications for assessing the environmental risk of MPs.


Assuntos
Microbiota , Microplásticos , Poliestirenos , Plásticos , Polietileno/toxicidade , Polipropilenos , Solo , Rizosfera
4.
Exp Mol Med ; 55(8): 1757-1769, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524874

RESUMO

Solute carrier family 39 member 10 (SLC39A10) belongs to a subfamily of zinc transporters and plays a key role in B-cell development. Previous studies have reported that its upregulation promotes breast cancer metastasis by enhancing the influx of zinc ions (Zn2+); however, its role in gastric cancer remains totally unclear. Here, we found that SLC39A10 expression was frequently increased in gastric adenocarcinomas and that SLC39A10 upregulation was strongly associated with poor patient outcomes; in addition, we identified SLC39A10 as a direct target of c-Myc. Functional studies showed that ectopic expression of SLC39A10 in gastric cancer cells dramatically enhanced the proliferation, colony formation, invasiveness abilities of these gastric cancer cells and tumorigenic potential in nude mice. Conversely, SLC39A10 knockdown inhibited gastric cancer cell proliferation and colony formation. Mechanistically, SLC39A10 exerted its carcinogenic effects by increasing Zn2+ availability and subsequently enhancing the enzyme activity of CK2 (casein kinase 2). As a result, the MAPK/ERK and PI3K/AKT pathways, two major downstream effectors of CK2, were activated, while c-Myc, a downstream target of these two pathways, formed a vicious feedback loop with SLC39A10 to drive the malignant progression of gastric cancer. Taken together, our data demonstrate that SLC39A10 is a functional oncogene in gastric cancer and suggest that targeting CK2 is an alternative therapeutic strategy for gastric cancer patients with high SLC39A10 expression.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Caseína Quinase II/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Zinco/metabolismo , Humanos
5.
Technol Cancer Res Treat ; 22: 15330338231166754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093867

RESUMO

OBJECTIVE: Circulating tumor cells are complete tumor cells with multi-scale analysis values that present a high potential for lung cancer diagnosis. To enhance the accuracy of lung cancer diagnosis, we detected circulating tumor cells by the innovated conical micro filter integrated microfluidic system. METHODS: We recruited 45 subjects of study, including 22 lung cancer patients, 2 precancerous patients, the control group including 14 healthy participants, and 7 patients with lung benign lesions in this prospective study. We calculated the area under the receiver operating characteristic curve of circulating tumor cells, cytokeratin19 fragment, carcinoma embryonic antigen, squamous cell carcinoma, neuron-specific enolase, and their combination, respectively, while compared the circulating tumor cells levels between vein blood and arterial blood. A conical shape filter embedded in a microfluidic chip was used to improve the detection capability of circulating tumor cells. RESULTS: The study indicated that the sensitivity, specificity, positive predictive value, and negative predictive value of circulating tumor cells detection were 81.8%, 90.5%, 90.0%, and 82.6%, respectively. The circulating tumor cells level of lung cancer patient was significantly higher than that of the control group (P < .05). The area under the curve of circulating tumor cells, cytokeratin19 fragment, carcinoma embryonic antigen, squamous cell carcinoma, and neuron-specific enolase alone was 0.838, 0.760, 0.705, 0.614, and 0.636, respectively. The combination area under the curve of the 4 tumor markers (cytokeratin19 fragment, carcinoma embryonic antigen, squamous cell carcinoma, and neuron-specific enolase) was 0.805 less than that of circulating tumor cells alone. Together, the total area under the curve of circulating tumor cell and the 4 tumor markers were 0.847, showing the highest area under the curve value among all biomarkers. In addition, this study found that there was no significant difference in positive rate of circulating tumor cell between arterial and venous blood samples. CONCLUSION: The circulating tumor cells detection technology by conical micro filter integrated microfluidic could be used for lung cancer diagnosis with high sensitivity and specificity. Complementary combination of circulating tumor cells and conventional 4 lung cancer markers could enhance the clinical application accuracy. Venous blood should be used as a routine sample for circulating tumor cells detections.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Biomarcadores Tumorais , Estudos Prospectivos , Antígeno Carcinoembrionário , Neoplasias Pulmonares/patologia , Pulmão/patologia , Carcinoma de Células Escamosas/diagnóstico , Fosfopiruvato Hidratase
6.
Ann Med ; 55(1): 388-400, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36629738

RESUMO

BACKGROUND: Venetoclax monotherapy is an effective option for patients with acute myeloid leukemia (AML). Venetoclax has also been used in non-myeloablative conditioning allogeneic hematopoietic stem cell transplantation (allo-HSCT) for high-risk AML with a tolerable toxicity profile. However, the efficacy and safety of a venetoclax-containing myeloablative conditioning (MAC) allo-HSCT regimen for high-risk AML have not been evaluated. OBJECTIVE: To evaluate the safety and efficacy of a MAC regimen containing venetoclax for high-risk AML. STUDY DESIGN: From 25 February 2021 to 4 September 2022, a total of 31 patients with high-risk AML who underwent allo-HSCT and a MAC regimen with venetoclax were analyzed. RESULTS: At the time of transplantation, 21 patients were in first complete remission (CR1), 4 were in a second complete remission (CR2), and 6 in non-remission (NR). Twenty-four patients (77.4%) were minimal residual disease (MRD)-positive before transplant. The FLT3-ITD gene mutation was present in 51.6% of patients. NUP98 rearrangement, MLL rearrangement or MLL-PTD and DEK::CAN fusion genes were found in 5 (16.1%), 7(22.6%) and 2 (6.5%) patients, respectively. Twenty-nine (93.6%) patients underwent haploidentical allo-HSCT. The median follow-up time was 278 days (range: 52-632 days). The 100-day cumulative incidence of grade 3 to 4 acute graft-versus-host disease (aGVHD) was 16.1% (95%CI, 7.2-36.0%). The 180-day cumulative incidence of moderate to severe chronic graft-versus-host disease (cGVHD) was 7.1% (95%CI, 1.9-26.9%). Cumulative incidence of 100-day cytomegalovirus (CMV) viraemia and 100-day Epstein-Barr virus (EBV) viraemia was 61.6% (95%CI, 46.5-81.4%) and 3.2% (95%CI, 0.4-22.2%), respectively. The 600-day overall survival (OS) and leukemia-free survival (LFS) were 80.9% (95%CI, 63.5-93.6%) and 81.3% (95%CI, 64.2-93.7%), respectively. The 600-day relapse incidence (RI) and non-relapse mortality (NRM) was 6.9% (95%CI, 1.8-26.3%) and 11.7% (95%CI, 3.9-35.0%). CONCLUSION: Our study shows that the addition of venetoclax to a MAC allo-HSCT was feasible, safe and effective for high-risk AML patients.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Infecções por Vírus Epstein-Barr/complicações , Viremia/complicações , Estudos Retrospectivos , Transplante Homólogo/efeitos adversos , Herpesvirus Humano 4 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Condicionamento Pré-Transplante/efeitos adversos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Cromossômicas não Histona , Proteínas Oncogênicas
7.
Plant Physiol Biochem ; 194: 589-599, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529009

RESUMO

Microplastics (MPs) have been a global emerging contaminant and have aroused wide public concern. Currently, it is still unknown the phytotoxicity effect of MPs on amaranth (Amaranthus mangostanus L.). This study investigated the early responses of amaranth by exposing its seeds to suspensions of polystyrene (PS), polyethylene (PE), and polypropylene (PP) MPs. We observed the effects of MPs on seed germination and growth of amaranth, especially on the oxidative damage in amaranth roots. Impacts of MPs on the germination and growth of amaranth varied with the type, concentration, and particle size of MPs. PE MPs and PP MPs inhibited the shoot extension of amaranth, while the root length under PP MPs treatment was generally shorter than that under PS MPs and PE MPs. The accumulation of H2O2 in amaranth roots increased with the rising of MPs concentration. Compared with the control, a little number of dead cells were found in the roots of amaranth under high MPs treatment. It is noteworthy that only under 100 mg/L PP treatment, the amaranthus seedlings root cells were disorganized, due to the reactive oxygen species (ROS) damage in the roots. These findings provide essential information to assess the phytotoxicity of MPs in agricultural products, and provide insights into the underlying mechanisms of the observed phytotoxicity.


Assuntos
Amaranthus , Plântula , Germinação , Microplásticos/farmacologia , Plásticos , Peróxido de Hidrogênio/farmacologia
8.
Front Cell Infect Microbiol ; 12: 1011378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339341

RESUMO

Clonorchis sinensis (C. sinensis) infection induces severe hepatobiliary injuries, which can cause inflammation, periductal fibrosis, and even cholangiocarcinoma. Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) and its receptor S1P receptors (S1PRs) have been implicated in many liver-related diseases. However, the role of S1PRs in C. sinensis-mediated biliary epithelial cells (BECs) proliferation and hepatobiliary injury has not been elucidated. In the present study, we found that C. sinensis infection resulted in alteration of bioactive lipids and sphingolipid metabolic pathways in mice liver. Furthermore, S1PR2 was predominantly activated among these S1PRs in BECs both in vivo and in vitro. Using JTE-013, a specific antagonist of S1PR2, we found that the hepatobiliary pathological injuries, inflammation, bile duct hyperplasia, and periductal fibrosis can be significantly inhibited in C. sinensis-infected mice. In addition, both C. sinensis excretory-secretory products (CsESPs)- and S1P-induced activation of AKT and ERK1/2 were inhibited by JTE-013 in BECs. Therefore, the sphingolipid metabolism pathway and S1PR2 play an important role, and may serve as potential therapeutic targets in hepatobiliary injury caused by C. sinensis-infection.


Assuntos
Neoplasias dos Ductos Biliares , Clonorquíase , Clonorchis sinensis , Camundongos , Animais , Clonorquíase/metabolismo , Clonorquíase/patologia , Receptores de Esfingosina-1-Fosfato , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Inflamação/patologia , Fibrose , Esfingolipídeos
9.
Front Cell Infect Microbiol ; 12: 994838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310865

RESUMO

Clonorchiasis caused by Clonorchis sinensis is a mainly foodborne parasitic disease. It can lead to hepatobiliary duct inflammation, fibrosis, obstructive jaundice, liver cirrhosis, and even cholangiocarcinoma. Interleukin (IL)-10 is an immune-regulatory cytokine which plays an immunosuppressive role during infection. Our previous study found that IL-10 was increased in mice with C. sinensis infection. However, the role and mechanism of IL-10 playing in hepatobiliary injury induced by C. sinensis infection remain unknown. Herein, Il10+/+ mice and Il10+/- C57BL/6J mice were infected with C. sinensis. It was found that IL-10 deficiency aggravated biliary hyperplasia and exacerbated periductal fibrosis induced by C. sinensis infection. Moreover, IL-10 deficiency increased CD4+T cells and CD8+T cells but not macrophages in the liver of mice with infection. There were no apparent differences in Th1 and Treg cells between Il10+/+ and Il10+/- mice infected with C. sinensis. However, the proportion of Th17 cells in CD4+T cells in Il10+/- infected mice was significantly higher than that in Il10+/+ infected mice. IL-10 deficiency also enhanced the increase of Th17 cells induced by ESPs stimulation in vitro. Taken together, our results suggest that IL-10 plays a protective role in hepatobiliary injury in C57BL/6J mice induced by C. sinensis infection via inhibiting Th17 cells, which could deepen our understanding of the immunopathology of clonorchiasis.


Assuntos
Clonorquíase , Animais , Camundongos , Clonorquíase/parasitologia , Clonorquíase/patologia , Fibrose , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Células Th17
10.
PLoS Negl Trop Dis ; 16(8): e0010651, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930537

RESUMO

BACKGROUND: Schistosomiasis, with 250 million people affected, is characterized by its serious hepatic inflammatory response and fibrosis formation, which could lead to dangerous complications, such as portal hypertension, splenomegaly and even ascites. But until now, the pathogenesis of schistosomiasis remains largely unknown. Farnesoid X Receptor (FXR), a bile acid-activated nuclear transcription factor mainly expresses in hepatocytes in the liver, can regulate liver diseases by controlling bile acid metabolism. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we found that the expression of FXR was decreased in the liver of infected mice as shown by western blot and RT-qPCR assays. Furthermore, hepatocyte-specific FXR-deficient mice (FXRflox/floxAlbCre, FXR-HKO) were generated and infected with ~16 cercariae of S. japonicum for five weeks. We found that FXR deficiency in hepatocytes promoted the progression of liver injury, aggravated weight loss and death caused by infection, and promoted inflammatory cytokines production, such as IL-6, IL-1ß, TNF-α, IL-4, IL-10, and IL-13. Surprisingly, hepatic granulomas and fibrosis were not affected. In addition, using UPLC-MS/MS spectrometry, it was found that S. japonicum infection resulted in elevated bile acids in the liver of mice, which was more obvious in FXR-deficient mice. Meanwhile, autophagy was induced in littermate control mice due to the infection, but it was significantly decreased in FXR-HKO mice. CONCLUSIONS/SIGNIFICANCE: All these findings suggest that FXR deficiency in hepatocytes disrupts bile acid homeostasis and inhibits autophagy, which may aggravate the damages of hepatocytes caused by S. japonicum infection. It highlights that FXR in hepatocytes plays a regulatory role in the progression of schistosomiasis.


Assuntos
Ácidos e Sais Biliares , Schistosoma japonicum , Animais , Autofagia , Ácidos e Sais Biliares/metabolismo , Cromatografia Líquida , Fibrose , Hepatócitos/patologia , Homeostase , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Espectrometria de Massas em Tandem
11.
Cell Death Dis ; 13(8): 751, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042202

RESUMO

There is a potential correlation between G-protein-coupled receptor-associated sorting protein 1 (GASP1) and breast tumorigenesis. However, its biological function and underlying molecular mechanism in breast cancer have not been clearly delineated. Here, we demonstrated that GASP1 was highly expressed in breast cancers, and patients harboring altered GASP1 showed a worse prognosis than those with wild-type GASP1. Functional studies showed that GASP1 knockout significantly suppressed malignant properties of breast cancer cells, such as inhibition of cell proliferation, colony formation, migration, invasion and xenograft tumor growth in nude mice as well as induction of G1-phase cell cycle arrest, and vice versa. Mechanistically, GASP1 inhibited proteasomal degradation of insulin-like growth factor 1 receptor (IGF1R) by competitively binding to IGF1R with ubiquitin E3 ligase MDM2, thereby activating its downstream signaling pathways such as NF-κB, PI3K/AKT, and MAPK/ERK pathways given their critical roles in breast tumorigenesis and progression. IGF1, in turn, stimulated GASP1 expression by activating the PI3K/AKT pathway, forming a vicious cycle propelling the malignant progression of breast cancer. Besides, we found that GASP1 knockout obviously improved the response of breast cancer cells to paclitaxel. Collectively, this study demonstrates that GASP1 enhances malignant behaviors of breast cancer cells and decreases their cellular response to paclitaxel by interacting with and stabilizing IGF1R, and suggests that it may serve as a valuable prognostic factor and potential therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Fator de Crescimento Insulin-Like I , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Nus , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
12.
Front Oncol ; 12: 915957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875120

RESUMO

Cell maintenance and the establishment of cell polarity involve complicated interactions among multiple protein complexes as well as the regulation of different signaling pathways. As an important cell polarity protein, Par3 is evolutionarily conserved and involved in tight junction formation as well as tumorigenesis. In this review, we aimed to explore the function of Par3 in tumorigenesis. Research has shown that Par3 exhibits dual functions in human cancers, both tumor-promoting and tumor-suppressive. Here, we focus on the activities of Par3 in different stages and types of tumors, aiming to offer a new perspective on the molecular mechanisms that regulate the functions of Par3 in tumor development. Tumor origin, tumor microenvironment, tumor type, cell density, cell-cell contact, and the synergistic effect of Par3 and other tumor-associated signaling pathways may be important reasons for the dual function of Par3. The important role of Par3 in mammalian tumorigenesis and potential signaling pathways is context dependent.

13.
Ann Nucl Med ; 36(4): 393-400, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35084711

RESUMO

OBJECTIVES: To explore the value of multiple metabolic and heterogeneity parameters of 2-deoxy-2-[fluorine-18] fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in predicting epidermal growth factor receptor gene (EGFR) mutations in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: A retrospective analysis was performed by reviewing 98 patients with NSCLC who underwent EGFR mutation testing and 18F-FDG PET/CT examination in our hospital between March 2016 and March 2021. Patients were divided into an EGFR-mutant group and a wild-type group. A multivariate logistic regression analysis was performed to screen and construct a prediction model. The diagnostic performance of the model was evaluated using a receiver-operating characteristic (ROC) curve. RESULTS: The study found that EGFR mutations were more likely to occur in women, non-smokers, and patients with peripheral lesions, shorter maximum tumor diameter, adenocarcinoma, and T1 stage cancer. Low maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume, total lesion glycolysis, and high coefficient of variation (COV) were significantly correlated with EGFR mutations, and the area under the ROC curve (AUC) was 0.622, 0.638, 0.679, 0.687, and 0.672, respectively. Multivariate logistic regression analysis indicated that non-smokers (odds ratio (OR) = 0.109, P = 0.014), peripheral lesions (OR = 6.917, P = 0.022), low SUVmax (≤ 7.85, OR = 5.471, P = 0.001), SUVmean (≤ 5.34, OR = 0.044, P = 0.000), and high COV (≥ 106.08, OR = 0.996, P = 0.045) were independent predictors of EGFR mutations. The AUC of the prediction model established by combining the above factors was 0.926; the diagnostic efficiency was significantly higher than that of a single parameter. CONCLUSION: Among the metabolic and heterogeneity parameters of 18F-FDG PET/CT, low SUVmax, SUVmean, and high COV were significantly associated with EGFR mutations, and the predictive value of EGFR mutations could be enhanced when combined with clinicopathological features.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Feminino , Radioisótopos de Flúor , Fluordesoxiglucose F18/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos
14.
Front Immunol ; 12: 754208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733286

RESUMO

The autonomic nervous system has been studied for its involvement in the control of macrophages; however, the mechanisms underlying the interaction between the adrenergic receptors and alternatively activated macrophages (M2) remain obscure. Using FVB wild-type and beta 2 adrenergic receptors knockout, we found that ß2-AR deficiency alleviates hepatobiliary damage in mice infected with C. sinensis. Moreover, ß2-AR-deficient mice decrease the activation and infiltration of M2 macrophages and decrease the production of type 2 cytokines, which are associated with a significant decrease in liver fibrosis in infected mice. Our in vitro results on bone marrow-derived macrophages revealed that macrophages from Adrb2-/- mice significantly decrease M2 markers and the phosphorylation of ERK/mTORC1 induced by IL-4 compared to that observed in M2 macrophages from Adrb2+/+ . This study provides a better understanding of the mechanisms by which the ß2-AR enhances type 2 immune response through the ERK/mTORC1 signaling pathway in macrophages and their role in liver fibrosis.


Assuntos
Clonorquíase/complicações , Cirrose Hepática Biliar/imunologia , Cirrose Hepática/imunologia , Ativação de Macrófagos , Neuroimunomodulação/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Ductos Biliares/parasitologia , Ductos Biliares/patologia , Células Cultivadas , Clonorquíase/imunologia , Clonorquíase/fisiopatologia , Citocinas/sangue , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/parasitologia , Cirrose Hepática Biliar/patologia , Sistema de Sinalização das MAP Quinases , Macrófagos/classificação , Macrófagos/imunologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos Knockout , Receptores Adrenérgicos beta 2/deficiência , Organismos Livres de Patógenos Específicos
15.
Bone Marrow Transplant ; 56(12): 3024-3028, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34531543

RESUMO

Graft-versus-host disease (GVHD) is a critical complication after allogeneic haematopoietic stem cell transplantation induced by genetic differences in donor-recipient pairs. Rigorous HLA matching has reduced GVHD, but severe GVHD still occurs. Minor histocompatibility antigens (mHAs) are another source of GVHD inducers. We designed a multi-mHA panel with 35 valid mHA loci and retrospectively analyzed 391 donor-recipient pairs with the anticipation of implementing mHA typing into clinical practice to optimize donor selection. Results showed the total mismatching in mHA loci in this panel, as well as mismatching in the GVH direction in unmatched-related recipients (UMRs) were 1.8 times and 1.3 times as those in matched-sibling recipients (MSRs) (p = 4.1e-4, p = 0.012, respectively). There was no significant association between mHA loci mismatching and grades II-IV acute GVHD (aGVHD), III-IV aGVHD, extensive chronic GVHD (cGVHD), or relapse in neither group. UMRs had an increased cumulative incidence of II-IV aGVHD (p = 0.002), but there was no statistical difference of the incidences in severe aGVHD or cGVHD (p = 0.093; p = 0.930). This is a preliminary study to explore GVHD risks brought by mHA loci mismatching in both unmatched-related recipients and matched-full-sibling recipients. Our results confirmed that stringent HLA matching is the key to reduce the risks for GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Histocompatibilidade , Teste de Histocompatibilidade , Humanos , Antígenos de Histocompatibilidade Menor/genética , Estudos Retrospectivos , Irmãos
16.
Adv Sci (Weinh) ; 8(13): e2101458, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051063

RESUMO

Because there is no effective treatment for late-stage prostate cancer (PCa) at this moment, identifying novel targets for therapy of advanced PCa is urgently needed. A new network-based systems biology approach, XDeath, is developed to detect crosstalk of signaling pathways associated with PCa progression. This unique integrated network merges gene causal regulation networks and protein-protein interactions to identify novel co-targets for PCa treatment. The results show that polo-like kinase 1 (Plk1) and DNA methyltransferase 3A (DNMT3a)-related signaling pathways are robustly enhanced during PCa progression and together they regulate autophagy as a common death mode. Mechanistically, it is shown that Plk1 phosphorylation of DNMT3a leads to its degradation in mitosis and that DNMT3a represses Plk1 transcription to inhibit autophagy in interphase, suggesting a negative feedback loop between these two proteins. Finally, a combination of the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza) with inhibition of Plk1 suppresses PCa synergistically.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , Neoplasias da Próstata/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Transdução de Sinais , Quinase 1 Polo-Like
17.
Bioact Mater ; 6(11): 4209-4242, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33997503

RESUMO

Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.

18.
J Cancer ; 11(23): 6874-6882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123278

RESUMO

Accumulating evidence indicates that hotspot p53 mutants have gain-of-function in promoting cell migration and tumor metastasis. However, the molecular mechanisms are not completely understood. Here, we show that a hotspot mutation, p53-R273H, promotes non-small cell lung cancer (NSCLC) cell migration and upregulates the mRNA and protein expression of neuraminidase-1 (NEU1), a sialidase involved in cell proliferation, cell migration and tumorigenesis. Silencing of NEU1 leads to upregulation of integrin ß4 which significantly inhibits NSCLC cell migration induced by p53-R273H. Mechanistically, p53-R273H promotes NEU1 transcription via activation of AKT signaling. Importantly, NEU1 expression is upregulated in human NSCLC samples harboring mutant p53 and is associated with poor clinical outcome. Overall, this study highlights an important role of NEU1 in p53-R273H-induced NSCLC cell migration and provides a potential target for NSCLC diagnosis and treatment.

19.
J Mater Chem B ; 7(35): 5336-5344, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31393501

RESUMO

Nanomaterials have made great breakthroughs in drug delivery. However, in previous studies, nanomaterials have been mostly used as vehicles to transport drugs into tumors. Herein, we first found that the in situ biosynthesized gold nanoparticles (Au NCs) can inhibit cancer development via the inhibition of some signaling pathways. Classical cell phenotypic assay tests and orthotropic liver tumor model both showed that the in situ biosynthesized Au NCs could inhibit tumor development. With the help of the RNA-seq analysis, we found that the in situ biosynthesized Au NCs could significantly inhibit the PI3K-AKT signaling pathway, thus effectively impeding tumor development. This facile and effective tumor targeting theranostics in vivo can effectively cure cancers in future clinical applications.


Assuntos
Carcinogênese/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nanomedicina Teranóstica/métodos
20.
Free Radic Biol Med ; 143: 324-330, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31446053

RESUMO

Reactive trichloroethene (TCE) metabolites and oxidative stress are involved in TCE-mediated autoimmunity, as evident from our earlier studies in MRL+/+ mice. However, molecular mechanisms underlying the autoimmunity remain largely unknown. Cytochrome P450 2E1 (CYP2E1), the major enzyme responsible for TCE metabolism, could contribute to TCE-induced toxic response through free radical generation. The current study was, therefore, aimed to further evaluate the significance of TCE metabolism leading to oxidative stress and autoimmune response by using MRL+/+ mice that lack CYP2E1. The Cyp2e1-null MRL+/+ mice were generated by backcrossing Cyp2e1-null mice (B6N; 129S4-Cyp2e1) to MRL +/+ mice. Female MRL+/+ and Cyp2e1-null MRL+/+ mice were given TCE (10 mmol/kg, i.p., every 4th day) for 6 weeks; their respective controls received corn oil only. TCE treatment in MRL+/+ mice induced oxidative stress, evident from significantly increased serum malondiadelhyde (MDA)-protein adducts, their antibodies and reduced liver GSH levels. TCE treatment also modulated Nrf2 pathway with decreased Nrf2 and HO-1, and elevated NF-κB (p65) expression in the liver. TCE exposure also led to increases in serum antinuclear antibodies (ANA) and anti-double stranded DNA antibodies (anti-dsDNA). Although TCE treatment in Cyp2e1-null MRL+/+ mice also led to increases in serum MDA-protein adducts and their antibodies, changes in liver GSH, Nrf2, HO-1 and NF-κB along with increases in serum ANA, anti-dsDNA, the alterations in the oxidative stress and autoimmunity markers in these mice were less pronounced compared to those in MRL+/+ mice. These findings support the contribution of CYP2E1-mediated TCE metabolism in autoimmune response and an important role of Nrf2 pathway in TCE-mediated autoimmunity.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/epidemiologia , Autoimunidade/imunologia , Citocromo P-450 CYP2E1/fisiologia , Estresse Oxidativo , Tricloroetileno/toxicidade , Anestésicos Inalatórios/toxicidade , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/patologia , Feminino , Glutationa/metabolismo , Incidência , Peroxidação de Lipídeos , Camundongos , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA