Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746415

RESUMO

Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that, in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.

2.
Chemosphere ; 358: 142119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697567

RESUMO

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Assuntos
Biocombustíveis , Reatores Biológicos , Dióxido de Carbono , Metano , Dióxido de Carbono/análise , Eletrólise , Eletrodos , Fontes de Energia Bioelétrica , Methanobacterium/metabolismo , Membranas Artificiais , Proteobactérias/metabolismo
3.
Food Chem ; 451: 139451, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38703724

RESUMO

Active antibacterial materials play an important role in solving food safety problems caused by pathogen contamination. In this study, a composite active antibacterial material with the synergistic antibacterial effectiveness of photothermal, photodynamic and the surface charge of polyphenols was developed, where the multi-porous polyphenol functionalized metal-organic frameworks (ZIF-8-TA) were used as the framework carrier, and black phosphorus quantum dots (BPQDs) were used as the photosensitive source. The resulted ZIF-8-TA/PBQDs possesses excellent photothermal conversion efficiency (27.92%), photodynamic performance and surface charge, and these factors ensure the outstanding broad-spectrum antibacterial performance (100%). Multifunctional characteristics and excellent biocompatibility endow the materials with vast potential for foodstuff packaging. The results showed that the composite antibacterial film produced by doping ZIF-8-TA/PBQDs into chitosan could effectively prolong the shelf life of foodstuff compared with commercial membrane. The successful implementation of this research provides a new idea for controlling microbial contamination and developing multifunctional antibacterial materials.

4.
J Gastrointest Oncol ; 15(2): 730-746, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756638

RESUMO

Background: Solute carrier family 16 member 1 (SLC16A1) serves as a biomarker in numerous types of cancer. Tumor immune infiltration has drawn increasing attention in cancer progression and treatment. The objective of our study was to explore the association between SLC16A1 and the tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC). Methods: Data were obtained from The Cancer Genome Atlas. The xCell web tool was used to calculate the proportion of immune cells according to SLC16A1 expression. To further explore the mechanism of SLC16A1, immunity-related genes were screened from differentially expressed genes through weighted gene coexpression network analysis, examined via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and filtrated using univariate Cox regression and least absolute shrinkage and selection operator regression model combined correlation analysis (P<0.05). Next, CIBERSORT was used to analyze the correlation between immune cells and five important genes. SLC16A1 expression and its clinical role in pancreatic cancer was clarified via immunohistochemical staining experiments. Finally, the effects of SLC16A1 on the results of cancer immunity were evaluated by in vitro experiments. Results: SLC16A1 was overexpressed in PDAC tissues and could be an independent prognostic factor. SLC16A1 was significantly negatively correlated with overall survival and suppressed the tumor immunity of PDAC. In clinic, SLC16A1 expression was significantly positively correlated with tumor progression and poor prognosis. We also found that SLC16A1 could suppress the antitumor ability of CD8+ T cells. Conclusions: SLC16A1 is a biomarker for the prognosis of PDAC and can influence the immune environment of PDAC. These findings provide new insights into the treatment of PDAC.

5.
J Urol ; 211(5): 648-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591703

RESUMO

PURPOSE: Benefits of docetaxel-based neoadjuvant chemohormonal therapy (NCHT) before radical prostatectomy (RP) remain largely unknown. We explored whether docetaxel-based NCHT would bring pathological benefits and improve biochemical progression-free survival (bPFS) over neoadjuvant hormonal therapy (NHT) in locally advanced prostate cancer. MATERIALS AND METHODS: A randomized trial was designed recruiting 141 locally advanced, high-risk prostate cancer patients who were randomly assigned at the ratio of 2:1 to the NCHT group (75 mg/m2 body surface area every 3 weeks plus androgen deprivation therapy for 6 cycles) and the NHT group (androgen deprivation therapy for 24 weeks). The primary end point was 3-year bPFS. Secondary end points were pathological response including pathological downstaging and minimal residual disease rates. RESULTS: The NCHT group showed significant benefits in 3-year bPFS compared to the NHT group (29% vs 9.5%, P = .002). At a median follow-up of 53 months, the NCHT group achieved a significantly longer median bPFS time than the NHT group (17 months vs 14 months). No significant differences were found between the 2 groups in pathological downstaging and minimal residual disease rates. CONCLUSIONS: NCHT plus RP achieved significant bPFS benefits when compared with NHT plus RP in high-risk, locally advanced prostate cancer. A larger cohort with longer follow-up duration is essential in further investigation.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Docetaxel , Terapia Neoadjuvante , Antagonistas de Androgênios/uso terapêutico , Estudos Prospectivos , Androgênios , Neoplasia Residual/cirurgia , Prostatectomia , Antígeno Prostático Específico
6.
Foods ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611408

RESUMO

Jam is a popular traditional and modern food product for daily consumption. However, the benefits of mixed jams over single-fruit jams have not been thoroughly explored, with analyses limited to superficial indices. In this study, Xinjiang special Morus nigra L. and Prunus domestica L. were used as raw materials to prepare single-fruit and mixed jams, and their differences in antioxidants, organoleptic qualities, pH, texture, and color were analyzed. The dynamics of metabolites before and after thermal processing were assessed using untargeted metabolomics. The results indicate that the main metabolites were flavonoids, terpenoids, amino acids, phenolic acids, and carbohydrates. Flavonoid metabolites changed significantly after thermal processing, with 40 up-regulated and 13 down-regulated. During storage, polyphenols were the prominent differential metabolites, with fifty-four down-regulated and one up-regulated. Volatile aroma components were analyzed using gas chromatography-ion mobility spectrometry (GC-IMS); the aroma components E-2-hexenal, E-2-pentenal, 3-methylbutanal, 1-penten-3-ol, tetrahydro-linalool, 1-penten-3-one, hexyl propionate, isoamyl acetate, α-pinene, and propionic acid in mixed jam were significantly higher than in single-fruit jam. In this study, untargeted metabolomics and GC-IMS were used to provide a more comprehensive and in-depth evaluation system for jam analysis.

7.
Acta Biomater ; 180: 82-103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621599

RESUMO

The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and ß-Tricalcium Phosphate (ß-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defect. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into ß-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Fosfatos de Cálcio , Osteoporose , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osteoporose/patologia , Osteoporose/terapia , Osteoporose/tratamento farmacológico , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Ratos Sprague-Dawley , Selênio/química , Selênio/farmacologia , Feminino , Osteogênese/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Injeções
8.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640682

RESUMO

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Assuntos
Biodegradação Ambiental , Cádmio , Nicotiana , Cádmio/toxicidade , Cádmio/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Plantas Geneticamente Modificadas/metabolismo
9.
Open Life Sci ; 19(1): 20220854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633414

RESUMO

Large segmental bone defects are commonly operated with autologous bone grafting, which has limited bone sources and poses additional surgical risks. In this study, we fabricated poly(lactide-co-glycolic acid) (PLGA)/ß-tricalcium phosphate (ß-TCP) composite membranes by electrostatic spinning and further promoted osteogenesis by regulating the release of ß-TCP in the hope of replacing autologous bone grafts in the clinical practice. The addition of ß-TCP improved the mechanical strength of PLGA by 2.55 times. Moreover, ß-TCP could accelerate the degradation of PLGA and neutralize the negative effects of acidification of the microenvironment caused by PLGA degradation. In vitro experiments revealed that PLGA/TCP10 membranes are biocompatible and the released ß-TCP can modulate the activity of osteoblasts by enhancing the calcium ions concentration in the damaged area and regulating the pH of the local microenvironment. Simultaneously, an increase in ß-TCP can moderate the lactate content of the local microenvironment, synergistically enhancing osteogenesis by promoting the tube-forming effect of human umbilical vein endothelial cells. Therefore, it is potential to utilize PLGA/TCP bioactive membranes to modulate the microenvironment at the site of bone defects to promote bone regeneration.

10.
Clin Transl Oncol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678522

RESUMO

BACKGROUND: The survival advantage of neoadjuvant systemic therapy (NST) for breast cancer patients remains controversial, especially when considering the heterogeneous characteristics of individual patients. OBJECTIVE: To discern the variability in responses to breast cancer treatment at the individual level and propose personalized treatment recommendations utilizing deep learning (DL). METHODS: Six models were developed to offer individualized treatment suggestions. Outcomes for patients whose actual treatments aligned with model recommendations were compared to those whose did not. The influence of certain baseline features of patients on NST selection was visualized and quantified by multivariate logistic regression and Poisson regression analyses. RESULTS: Our study included 94,487 female breast cancer patients. The Balanced Individual Treatment Effect for Survival data (BITES) model outperformed other models in performance, showing a statistically significant protective effect with inverse probability treatment weighting (IPTW)-adjusted baseline features [IPTW-adjusted hazard ratio: 0.51, 95% confidence interval (CI), 0.41-0.64; IPTW-adjusted risk difference: 21.46, 95% CI 18.90-24.01; IPTW-adjusted difference in restricted mean survival time: 21.51, 95% CI 19.37-23.80]. Adherence to BITES recommendations is associated with reduced breast cancer mortality and fewer adverse effects. BITES suggests that patients with TNM stage IIB, IIIB, triple-negative subtype, a higher number of positive axillary lymph nodes, and larger tumors are most likely to benefit from NST. CONCLUSIONS: Our results demonstrated the potential of BITES to aid in clinical treatment decisions and offer quantitative treatment insights. In our further research, these models should be validated in clinical settings and additional patient features as well as outcome measures should be studied in depth.

11.
Orphanet J Rare Dis ; 19(1): 174, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654381

RESUMO

BACKGROUND: Multisystem childhood Langerhans cell histiocytosis (LCH) patients, especially those with risk organ (RO) involved, had not been satisfactorily treated under the international traditional schemes as high incidences of reactivation with late sequelae were largely reported. Over years, we have observed that LCH patients with varied clinical symptoms responded differently to different drugs, suggesting the current grouping strategies based only on the number of organs involved might be inadequate. LCH has been defined as an inflammatory myeloid tumor, thus this study has innovatively divided LCH pediatric patients into inflammatory or malignant symptoms group, and given different intensity treatment regimens to different groups. AIM: This clinical study aimed to explore a more appropriate patient grouping system according to the LCH symptom presentations and examine the clinical outcomes of treatment strategies in different groups. METHODS: According to the clinical manifestations, 37 cases of children were divided into Group A (only inflammatory symptoms) and Group B (malignant symptoms with or without inflammatory symptoms). Patients in Group A and B were initially treated with vindesine (VDS) and methylprednisolone (PSL), and VDS, PSL, pirarubicin (THP) and cyclophosphamide (CTX), respectively. Treatment responses were evaluated six weeks after the induction therapy in all patients, and the criteria were disease status and clinical scores of symptoms. RESULTS: Pre- and post-treatment scores were 1.22 ± 0.547 and 0.00 ± 0.00 in Group A, and 14.79 ± 1.686 and 1.00 ± 1.563 in Group B, respectively. All patients had subsequentlly received maintenance therapy without progressive disease. The 4-year overall survival (OS) rate was 100% in both groups and the 4-year event-free survival (EFS) was 94.4% in Group A and 89.5% in Group B, respectively. There were no obvious adverse events (AE) in Group A, whereas the main AE in Group B were alopecia and non-lethal hematological toxicity. CONCLUSION: Stratification according to patients' clinical symptoms, with low-intensity treatment for inflammatory symptoms (mild manifestations) and intensive treatment with multiple drugs for malignant symptoms (severe manifestations), is a positive exploration that simplifies stratification method, achieves good long-term remission of the disease, and obtains a higher survival rate and quality of life, which seemed to be more appropriate for LCH patients.


Assuntos
Histiocitose de Células de Langerhans , Humanos , Histiocitose de Células de Langerhans/tratamento farmacológico , Histiocitose de Células de Langerhans/patologia , Feminino , Masculino , Projetos Piloto , Pré-Escolar , Criança , Lactente , Inflamação/tratamento farmacológico , Adolescente
12.
Oncogene ; 43(17): 1288-1302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443681

RESUMO

Fat mass and obesity-associated protein (FTO), which is closely linked with obesity and dietary intake, plays an important role in diet-related metabolic diseases. However, the underlying mechanism of the N6-methyladenosine (m6A) demethyltransferase FTO in tumor development and progression remains largely unexplored. Here, we demonstrated that FTO expression was largely lower in non-small cell lung cancer (NSCLC) samples than in adjacent healthy tissues, and its expression negatively correlated with poor prognosis. Gain- and loss-of-function assays revealed that FTO inhibited NSCLC tumor cell growth and metastasis in vitro and in vivo. Mechanistically, estrogen receptor alpha (ESR1) is a target of FTO, and increased FTO expression significantly impaired the m6A levels of ESR1 mRNA. There were two clear m6A modification sites (5247A and 5409A) in the 3' untranslated region (3'UTR) of ESR1, and FTO could decrease their methylation. Moreover, the m6A readers YTHDF1 and IGF2BP3 recognized and bound the m6A sites in ESR1 mRNA, thereby enhancing its stability and facilitating tumor growth. We also showed that ESR1 has good diagnostic value for NSCLC. In conclusion, we uncovered an important mechanism of epitranscriptomic regulation by the FTO-YTHDF1-IGF2BP3-ESR1 axis and identified the potential of m6A-dependent therapeutic strategies for NSCLC.

13.
Front Neurol ; 15: 1326591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456152

RESUMO

Background: This study focused on minimizing the costs and toxic effects associated with unnecessary chemotherapy. We sought to optimize the adjuvant therapy strategy, choosing between radiotherapy (RT) and chemoradiotherapy (CRT), for patients based on their specific characteristics. This selection process utilized an innovative deep learning method. Methods: We trained six machine learning (ML) models to advise on the most suitable treatment for glioblastoma (GBM) patients. To assess the protective efficacy of these ML models, we employed various metrics: hazards ratio (HR), inverse probability treatment weighting (IPTW)-adjusted HR (HRa), the difference in restricted mean survival time (dRMST), and the number needed to treat (NNT). Results: The Balanced Individual Treatment Effect for Survival data (BITES) model emerged as the most effective, demonstrating significant protective benefits (HR: 0.53, 95% CI, 0.48-0.60; IPTW-adjusted HR: 0.65, 95% CI, 0.55-0.78; dRMST: 7.92, 95% CI, 7.81-8.15; NNT: 1.67, 95% CI, 1.24-2.41). Patients whose treatment aligned with BITES recommendations exhibited notably better survival rates compared to those who received different treatments, both before and after IPTW adjustment. In the CRT-recommended group, a significant survival advantage was observed when choosing CRT over RT (p < 0.001). However, this was not the case in the RT-recommended group (p = 0.06). Males, older patients, and those whose tumor invasion is confined to the ventricular system were more frequently advised to undergo RT. Conclusion: Our study suggests that BITES can effectively identify GBM patients likely to benefit from CRT. These ML models show promise in transforming the complex heterogeneity of real-world clinical practice into precise, personalized treatment recommendations.

14.
Plant Physiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506490

RESUMO

Iron (Fe) distribution and reutilization are crucial for maintaining Fe homeostasis in plants. Here, we demonstrate that the tomato (Solanum lycopersicum) Colorless non-ripening (Cnr) epimutant exhibits increased Fe retention in cell wall pectin due to an increase in pectin methylesterase (PME) activity. This ultimately leads to Fe deficiency responses even under Fe-sufficient conditions when compared to the wild type (WT). Whole-genome bisulfite sequencing revealed that modifications to cell wall-related genes, especially CG hypermethylation in the intron region of PECTIN METHYLESTERASE53 (SlPME53), are involved in the Cnr response to Fe deficiency. When this intron hypermethylation of SlPME53 was artificially induced in WT, we found that elevated SlPME53 expression was accompanied by increased PME activity and increased pectin-Fe retention. The manipulation of SlPME53, either through overexpression in WT or knockdown in Cnr, influenced levels of pectin methylesterification and accumulation of apoplast Fe in roots. Moreover, CG hypermethylation mediated by METHYLTRANSFERASE1 (SlMET1) increased SlPME53 transcript abundance, resulting in greater PME activity and higher Fe retention in cell wall pectin. Therefore, we conclude that the Cnr mutation epigenetically modulates SlPME53 expression by SlMET1-mediated CG hypermethylation, and thus the capacity of the apoplastic Fe pool, creating opportunities for genetic improvement of crop mineral nutrition.

15.
Cell Transplant ; 33: 9636897241237049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483119

RESUMO

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neuroinflamatórias , Talidomida/análogos & derivados , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
16.
J Cancer Res Clin Oncol ; 150(2): 67, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302801

RESUMO

BACKGROUND: There are potential uncertainties and overtreatment existing in radical prostatectomy (RP) for prostate cancer (PCa) patients, thus identifying optimal candidates is quite important. PURPOSE: This study aims to establish a novel causal inference deep learning (DL) model to discern whether a patient can benefit more from RP and to identify heterogeneity in treatment responses among PCa patients. METHODS: We introduce the Self-Normalizing Balanced individual treatment effect for survival data (SNB). Six models were trained to make individualized treatment recommendations for PCa patients. Inverse probability treatment weighting (IPTW) was used to avoid treatment selection bias. RESULTS: 35,236 patients were included. Patients whose actual treatment was consistent with SNB recommendations had better survival outcomes than those who were inconsistent (multivariate hazard ratio (HR): 0.76, 95% confidence interval (CI), 0.64-0.92; IPTW-adjusted HR: 0.77, 95% CI, 0.61-0.95; risk difference (RD): 3.80, 95% CI, 2.48-5.11; IPTW-adjusted RD: 2.17, 95% CI, 0.92-3.35; the difference in restricted mean survival time (dRMST): 3.81, 95% CI, 2.66-4.85; IPTW-adjusted dRMST: 3.23, 95% CI, 2.06-4.45). Keeping other covariates unchanged, patients with 1 ng/mL increase in PSA levels received RP caused 1.77 months increase in the time to 90% mortality, and the similar results could be found in age, Gleason score, tumor size, TNM stages, and metastasis status. CONCLUSIONS: Our highly interpretable and reliable DL model (SNB) may identify patients with PCa who could benefit from RP, outperforming other models and clinical guidelines. Additionally, the DL-based treatment guidelines obtained can provide priori evidence for subsequent studies.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Próstata/patologia , Prostatectomia/métodos , Modelos de Riscos Proporcionais , Antígeno Prostático Específico , Estudos Retrospectivos
17.
Toxicol Mech Methods ; 34(5): 517-526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38293967

RESUMO

Fine particulate matter (PM2.5) increases the risks of lung cancer. Epigenetics provides a new toxicology mechanism for the adverse health effects of PM2.5. However, the regulating mechanisms of PM2.5 exposure on candidate gene DNA methylation changes in the development of lung cancer remain unclear. Abnormal expression of the glutathione S transferase (GST) gene is associated with cancer. However, the relationship between PM2.5 and DNA methylation-mediated GST gene expression is not well understood. In this study, we performed GST DNA methylation analysis and GST-related gene expression in human A549 cells exposed to PM2.5 (0, 50, 100 µg/mL, from Taiyuan, China) for 24 h (n = 4). We found that PM2.5 may cause DNA oxidative damage to cells and the elevation of GSTP1 promotes cell resistance to reactive oxygen species (ROS). The Kelch-1ike ECH-associated protein l (Keap1)/nuclear factor NF-E2-related factor 2 (Nrf2) pathway activates the GSTP1. The decrease in the DNA methylation level of the GSTP1 gene enhances GSTP1 expression. GST DNA methylation is associated with reduced levels of 5-methylcytosine (5mC), DNA methyltransferase 1 (DNMT1), and histone deacetylases 3 (HDAC3). The GSTM1 was not sensitive to PM2.5 stimulation. Our findings suggest that PM2.5 activates GSTP1 to defend PM2.5-induced ROS and 8-hydroxy-deoxyguanosine (8-OHdG) formation through the Keap1/Nrf2 signaling pathway and GSTP1 DNA methylation.


Assuntos
Metilação de DNA , Glutationa S-Transferase pi , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Material Particulado , Transdução de Sinais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Metilação de DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Células A549 , Transdução de Sinais/efeitos dos fármacos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
18.
Int J Oral Sci ; 16(1): 4, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221571

RESUMO

Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias Bucais , Humanos , Qualidade de Vida , Biomarcadores , Comunicação Celular
19.
Int J Surg ; 110(3): 1450-1462, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181121

RESUMO

OBJECTIVES: Prostate cancer (PCa) is one of the most common malignancies in men worldwide and has caused increasing clinical morbidity and mortality, making timely diagnosis and accurate staging crucial. The authors introduced a novel approach based on mass spectrometry for precise diagnosis and stratification of PCa to facilitate clinical decision-making. METHODS: Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of trace blood samples was combined with machine learning algorithms to construct diagnostic and stratification models. A total of 367 subjects, comprising 181 with PCa and 186 with non-PCa were enrolled. Additional 60 subjects, comprising 30 with PCa and 30 with non-PCa were enrolled as an external cohort for validation. Subsequent metabolomic analysis was carried out using Autoflex MALDI-TOF, and the mass spectra were introduced into various algorithms to construct different models. RESULTS: Serum metabolic fingerprints were successfully obtained from 181 patients with PCa and 186 patients with non-PCa. The diagnostic model based on the eight signals demonstrated a remarkable area under curve of 100% and was validated in the external cohort with the area under curve of 87.3%. Fifteen signals were selected for enrichment analysis, revealing the potential metabolic pathways that facilitate tumorigenesis. Furthermore, the stage prediction model with an overall accuracy of 85.9% precisely classified subjects with localized disease and those with metastasis. The risk stratification model, with an overall accuracy of 89.6%, precisely classified the subjects as low-risk and high-risk. CONCLUSIONS: Our study facilitated the timely diagnosis and risk stratification of PCa and provided new insights into the underlying mechanisms of metabolic alterations in PCa.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Algoritmos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Medição de Risco
20.
Adv Sci (Weinh) ; 11(12): e2307360, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224220

RESUMO

Detecting exosomal markers using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is a novel approach for examining liquid biopsies of non-small cell lung cancer (NSCLC) samples. However, LDI-TOF MS is limited by low sensitivity and poor reproducibility when analyzing intact proteins directly. In this report, gold nanoparticles/cellulose nanocrystals (AuNPs/CNC) is introduced as the matrix for direct analysis of intact proteins in NSCLC serum exosomes. AuNPs/CNC with "dual dispersion" effects dispersed and stabilized AuNPs and improved ion inhibition effects caused by protein aggregation. These features increased the signal-to-noise ratio of [M+H]+ peaks by two orders of magnitude and lowered the detection limit of intact proteins to 0.01 mg mL-1. The coefficient of variation with or without AuNPs/CNC is measured as 10.2% and 32.5%, respectively. The excellent reproducibility yielded a linear relationship (y = 15.41x - 7.983, R2 = 0.989) over the protein concentration range of 0.01 to 20 mg mL-1. Finally, AuNPs/CNC-assisted LDI-TOF MS provides clinically relevant fingerprint information of exosomal proteins in NSCLC serum, and characteristic proteins S100 calcium-binding protein A10, Urokinase plasminogen activator surface receptor, Plasma protease C1 inhibitor, Tyrosine-protein kinase Fgr and Mannose-binding lectin associated serine protease 2 represented excellent predictive biomarkers of NSCLC risk.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Ouro/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA