Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Ophthalmol ; 17(5): 838-844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766334

RESUMO

AIM: To report a technique used with intermittent sliding-lock-knot (ISLK) fixation for limbal conjunctival autografts in pterygium surgery and compared with those of routine intermittent (RI) fixation. METHODS: Consecutive patients with primary pterygium who had undergone pterygium excision combined with limbal conjunctival autograft transplantation between March 2021 and March 2022 at our institute were retrospectively analyzed. Primary outcome measures were mean duration of surgery and suture removal, degree of conjunctival hyperemia on postoperative day 1, pain score at suture removal, postoperative symptoms at 6mo, including conjunctival hyperemia, foreign body sensation, and graft stability. RESULTS: Ninety-eight patients underwent monocular surgery and were divided into ISLK (51 eyes) and RI (47 eyes) groups according to the type of conjunctiva autograft fixation method planned. There was no significant difference in mean duration of surgery between the two groups (18.59±2.39min vs 18.15±2.20min, P=0.417); however, compared to the RI group, shorter suture removal times were observed in the ISLK group [0.58min (0.42-0.87) vs 3.00min (2.21-4.15), P<0.001]. The degree of conjunctival hyperemia on postoperative day 1 was milder in the ISLK group (P<0.001). Pain scores at suture removal were lower in the ISLK group than in RI group [1 (0-3) vs 2 (1-4), P<0.001]. Postoperative symptoms at 6mo were comparable between the groups (P=0.487), with no recurrence. CONCLUSION: ISLK is an innovative method for limbal conjunctival autograft fixation after pterygium excision. Compared to RI fixation, ISLK facilitates suture removal and reduces discomfort, with comparable surgery duration and less conjunctival hyperemia.

2.
Zhongguo Zhen Jiu ; 42(6): 673-5, 2022 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-35712953

RESUMO

The paper introduces professor GAO Shu-zhong's understanding on "seeking yin from yang needling method" and its clinical application on the basis of "qi street" and "four seas" theories. Through professor GAO's clinical practice for years, he integrates and extendes the theories of "seeking yin from yang", "qi street" and "four seas" in Huangdi Neijing (The Yellow Emperor's Inner Classic). In this specific acupuncture method, in reference with the theories of "qi street" and "four seas", acupuncture is exerted on yang part of body, e.g. the back and lumber region to treat the diseases of yin parts, e.g. the chest and abdomen, which is differentiated as yin-yang imbalance in pathogenesis. In order to fully explain the clinical curative effect of "seeking yin from yang needling method", the common diseases in clinic, e.g. the disorders of heart, spleen and stomach systems, as well as the gynecology are taken as examples in the paper.


Assuntos
Terapia por Acupuntura , Acupuntura , Terapia por Acupuntura/história , Humanos , Masculino , Qi , Procedimentos Cirúrgicos Vasculares , Yin-Yang
3.
Medicine (Baltimore) ; 101(18): e29224, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550474

RESUMO

RATIONALE: Polymorphous low-grade adenocarcinoma is a low-risk infiltrative malignant tumor of the salivary glands. However, some of these tumors are more malignant than the low-grade tumors and therefore, according to the most recent recommendation of the World Health Organization, they are renamed as polymorphous adenocarcinomas (PACs). Primary polymorphous low-grade adenocarcinomas/PACs of the lungs are rare. Herein, we report a case of primary PAC of the lung with bronchial cartilage and perineural invasion, and lymph node metastasis. PATIENT CONCERNS: A 58-year-old man had developed fever half a month prior, without chills or other accompanying symptoms, and the underlying reasons were unknown. His self-measured temperature was up to 39°C, accompanied by cough and expectoration, yellow and thin sputum, and shortness of breath. The patient's general state was normal, and respiratory sounds originating from the right lung were weak. Enhancement computed tomography revealed that the bronchial lumen of the basal segment of the lower lobe of the right lung was narrow; soft tissue density nodules were seen, with a range of approximately 2.4 cm × 1.3 cm. DIAGNOSIS: Based on clinical information, morphological features, and immunohistochemistry results, the pathological diagnosis was primary PAC of the lungs. INTERVENTION: Thoracoscopic resection of the middle and lower lobes of the right lung was performed, further extended dissection of the mediastinal lymph nodes was performed. OUTCOMES: The postoperative course was uneventful. LESSONS: Primary PAC of the lung is rare and may cause misdiagnosis. When encountering a lung tumor with diverse tissue structures, uniform cell type and nerve invasion, we should consider the possibility of PAC. Morphological and immunohistochemical features can be useful for diagnosing primary PAC of the lungs.


Assuntos
Adenocarcinoma , Neoplasias das Glândulas Salivares , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/cirurgia , Brônquios/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/patologia
4.
Oncogene ; 41(8): 1166-1177, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058597

RESUMO

BEST4 is a member of the bestrophin protein family that plays a critical role in human intestinal epithelial cells. However, its role and mechanism in colorectal cancer (CRC) remain largely elusive. Here, we investigated the role and clinical significance of BEST4 in CRC. Our results demonstrate that BEST4 expression is upregulated in clinical CRC samples and its high-level expression correlates with advanced TNM (tumor, lymph nodes, distant metastasis) stage, LNM (lymph node metastasis), and poor survival. Functional studies revealed that ectopic expression of BEST4 promoted CRC cell proliferation and metastasis, whereas the depletion of BEST4 had the opposite effect both in vitro and in vivo. Mechanistically, BEST4 binds to the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and promotes p110 kinase activity; this leads to activation of Akt signaling and expression of MYC and CCND1, which are critical regulators of cell proliferation and metastasis. In clinical samples, the expression of BEST4 is positively associated with the expression of phosphorylated Akt, MYC and CCND1. Pharmacological inhibition of Akt activity markedly repressed BEST4-mediated Akt signaling and proliferation and metastasis of CRC cells. Importantly, the interaction between BEST4 and p85α was also enhanced by epidermal growth factor (EGF) in CRC cells. Therapeutically, BEST4 suppression effectively sensitized CRC cells to gefitinib treatment in vivo. Taken together, our findings indicate the oncogenic potential of BEST4 in colorectal carcinogenesis and metastasis by modulating BEST4/PI3K/Akt signaling, highlighting a potential strategy for CRC therapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt
5.
Int J Nanomedicine ; 16: 7269-7281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737564

RESUMO

PURPOSE: Small molecule modified antitumor drug conjugate nanoparticles have the advantages of high drug loading, simple synthesis and preparation, and better biocompatibility. Due to the large demand for exogenous α-linolenic acid (ALA) by tumor cells, we synthesized α-linolenic acid-paclitaxel conjugate (ALA-PTX) and prepared α-linolenic acid-paclitaxel conjugate nanoparticles (ALA-PTX NPs), in order to obtain better tumor cellular uptake and antitumor activity in vitro and in vivo. METHODS: We synthesized and characterized ALA-PTX, and then prepared and characterized ALA-PTX NPs. The cellular uptake, uptake pathways, intracellular behavior, in vitro and in vivo antitumor activity of ALA-PTX NPs were evaluated. RESULTS: The size of ALA-PTX NPs was approximately 110.7±1.7 nm. The drug loading was approximately 90% (w/w) with CrEL-free and organic solvent-free characteristics. The cellular uptake of ALA-PTX NPs was significantly higher than that of PTX injection by MCF-7, MCF-7/ADR and HepG2 cells. In these three cell lines, the cellular uptake of ALA-PTX NPs at 6h was approximately 1.5-2.6 times higher than that of PTX injection. ALA-PTX NPs were ingested through clathrin-mediated endocytosis, then transferred to lysosomes, and could dissolve in cells to play an antitumor activity. The in vitro and in vivo antitumor activity of ALA-PTX NPs was confirmed in MCF-7/ADR and HepG2 cell models and tumor-bearing nude mouse models. CONCLUSION: ALA-PTX NPs developed in our study could provide a new method for the preparation of nano-delivery systems suitable for antitumor therapy that could increase tumor cellular uptake and enhance antitumor activity.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Nanopartículas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Endocitose , Camundongos , Paclitaxel , Ácido alfa-Linolênico
6.
Front Mol Biosci ; 8: 763652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722636

RESUMO

Objective: 5-fluorouracil- and oxaliplatin-based FOLFOX regimens are mainstay chemotherapeutics for colorectal cancer (CRC) but drug resistance represents a major therapeutic challenge. To improve patient survival, there is a need to identify resistance genes to better understand the mechanisms underlying chemotherapy resistance. Methods: Transcriptomic datasets were retrieved from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and combined with our own microarray data. Weighted gene co-expression network analysis (WGCNA) was used to dissect the functional networks and hub genes associated with FOLFOX resistance and cancer recurrence. We then conducted analysis of prognosis, profiling of tumor infiltrating immune cells, and pathway overrepresentation analysis to comprehensively elucidate the biological impact of the identified hub gene in CRC. Results: WGCNA analysis identified the complement component 3 (C3) gene as the only hub gene associated with both FOLFOX chemotherapy resistance and CRC recurrence after FOLFOX chemotherapy. Subsequent survival analysis confirmed that high C3 expression confers poor progression-free survival, disease-free survival, and recurrence-free survival. Further correlational analysis revealed significant negative association of C3 expression with sensitivity to oxaliplatin, but not 5-fluorouracil. Moreover, in silico analysis of tumor immune cell infiltration suggested the change of C3 expression could affect tumor microenvironment. Finally, gene set enrichment analysis (GSEA) revealed a hyperactivation of pathways contributing to invasion, metastasis, lymph node spread, and oxaliplatin resistance in CRC samples with C3 overexpression. Conclusion: Our results suggest that high C3 expression is a debilitating factor for FOLFOX chemotherapy, especially for oxaliplatin sensitivity, and C3 may represent a novel biomarker for treatment decision of CRC.

7.
Acta Biomater ; 136: 495-507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619371

RESUMO

The antitumor immune response involves a cascade of cancer-immunity cycles. Developing a combination therapy aimed at the cancer-immunity cycle is of great importance. In this research, we designed and tested a combined therapeutic-Au nanorod (AuNR)/doxorubicin (DOX) gel (AuNR/DOX gel)-in which the sustained release of DOX was controlled by Pluronic gel. DOX served as an immunogenic tumor cell death (ICD) inducer, triggering the production of damage-associated molecular patterns (DAMPs). Mild photothermal therapy (Mild PTT) produced by 880 nm laser-irradiated AuNRs also generated tumor-associated antigens. Maleimide-modified liposomes (L-Mals), as antigen capturing agents, promoted tumor antigen uptake by DCs. Ultimately, more CD8+ T cells and fewer regulatory T cells (Tregs) infiltrated the tumor, eliciting antitumor responses from the PD-L1 antibody. Our results indicate that this combination strategy promotes a positive shift in the cancer-immunity cycle and holds much promise for combination strategy will lead to development of an antitumor drug delivery system. STATEMENT OF SIGNIFICANCE: Developing a combination therapy for cancer-immunity cycle is of great importance due to antitumor immune response involving a cascade of cancer-immunity cycles. Cancer-immunity cycle usually includes tumor antigen release, antigen presentation, immune activation, trafficking, infiltration, specific recognition of tumor cells by T cells, and finally cancer cell killing. In this research, we designed a combination strategy based on Au nanorod/doxorubicin gel via mild photothermal therapy combined with antigen-capturing liposomes and anti-PD-L1 agent promoting a positive shift in the cancer-immunity cycle. Our results indicate that this combination strategy promotes a positive shift in the cancer-immunity cycle and holds much promise for combination strategy will lead to development of an antitumor drug delivery system.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Doxorrubicina , Melanoma Experimental , Nanotubos , Terapia Fototérmica , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Lipossomos , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL
8.
Artigo em Inglês | MEDLINE | ID: mdl-34335834

RESUMO

The transforming growth factor-ß (TGF-ß) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-ß signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-ß signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-ß signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-ß signaling. Specifically, this review evaluates TGF-ß's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-ß signaling pathway.

9.
Drug Deliv ; 28(1): 1603-1615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34319209

RESUMO

Small molecule-chemotherapeutic drug conjugate nanoparticles (SMCDC NPs) has a great advantage in improving drug loading. However, the factors which influence these conjugates forming stable nanoparticles (NPs) are currently unclear. In our previous studies, we synthesized a series of fatty acid-paclitaxel conjugates and suggested that the changes in the hydrophobic parameters (XlogP), solubility parameters and crystallinity of these fatty acid-paclitaxel conjugates were the key factors for affecting these small molecule-chemotherapeutic drug conjugates (SMCDCs) forming stable NPs in water. Here, we selected clinically widely used chemotherapeutic drug (docetaxel (DTX), doxorubicin (DOX) and irinotecan (Ir)) as model drug, and chose three straight-chain fatty acids (acetic acid (Ac), hexanoic acid (HA) and stearic acid (SA)) and one branched small molecule (N-(tert-butoxycarbonyl) glycine (B-G)) to synthesize 12 SMCDCs. Our results indicated that our prediction criterions obtained from paclitaxel conjugates were also appropriated for these synthesized SMCDCs. We suggested that the present studies expanded the scope of application of the above-mentioned influencing factors, provided research ideas for the rational design of SMCDC forming NPs and a basis for screening NPs with good anticancer activity.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Ácidos Graxos/química , Nanopartículas/química , Ácido Acético/química , Caproatos/química , Sobrevivência Celular , Química Farmacêutica , Docetaxel/administração & dosagem , Docetaxel/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Irinotecano/administração & dosagem , Irinotecano/farmacologia , Células MCF-7 , Tamanho da Partícula , Solubilidade , Ácidos Esteáricos/química
10.
Drug Deliv ; 28(1): 800-813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33866918

RESUMO

Cancer immunotherapy is a strategy that is moving to the frontier of cancer treatment in the current decade. In this study, we show evidence that 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs), act as immunogenic cell death (ICD) inducers, stimulating an antitumor response which results in synergistic antitumor activity by combining anti-PD-L1 antibody (aPD-L1) in vivo. To investigate the antitumor immunity induced by NPPA-PTX NPs, the expression of both ICD marker calreticulin (CRT) and high mobility group box 1 (HMGB1) were analyzed. In addition, the antitumor activity of NPPA-PTX NPs combined with aPD-L1 in vivo was also investigated. The immune response was also measured through quantitation of the infiltration of T cells and the secretion of pro-inflammatory cytokines. The results demonstrate that NPPA-PTX NPs induce ICD of MDA-MB-231 and 4T1 cells through upregulation of CRT and HMGB1, reactivating the antitumor immunity via recruitment of infiltrating CD3+, CD4+, CD8+ T cells, secreting IFN-γ, TNF-α, and the enhanced antitumor activity by combining with aPD-L1. These data suggest that the combined therapy has a synergistic antitumor activity and has the potential to be developed into a novel therapeutic regimen for cancer patients.


Assuntos
Albuminas/farmacologia , Antineoplásicos/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Nanopartículas/química , Paclitaxel/farmacologia , Albuminas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antígeno B7-H1/imunologia , Calreticulina/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Proteína HMGB1/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Propionatos/química , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Nanomedicine ; 15: 1809-1821, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214813

RESUMO

INTRODUCTION: Because tumor-associated inflammation is a hallmark of cancer treatment, in the present study, sorafenib mesoporous silica nanomatrix (MSNM@SFN) co-administrated with flufenamic acid (FFA, a non-steroidal anti-inflammatory drug (NSAID)) was investigated to enhance the anti-tumor activity of MSNM@SFN. METHODS: Metastatic breast tumor 4T1/luc cells and hepatocellular carcinoma HepG2 cells were selected as cell models. The effects of FFA in vitro on cell migration, PGE2 secretion, and AKR1C1 and AKR1C3 levels in 4T1/luc and HepG2 cells were investigated. The in vivo anti-tumor activity of MSNM@SFN co-administrating with FFA (MSNM@SFN+FFA) was evaluated in a 4T1/luc metastatic tumor model, HepG2 tumor-bearing nude mice model, and HepG2 orthotopic tumor-bearing nude mice model, respectively. RESULTS: The results indicated that FFA could markedly decrease cell migration, PGE2 secretion, and AKR1C1 and AKR1C3 levels in both 4T1/luc and HepG2 cells. The enhanced anti-tumor activity of MSNM@SFN+FFA compared with that of MSNM@SFN was confirmed in the 4T1/luc metastatic tumor model, HepG2 tumor-bearing nude mice model, and HepG2 orthotopic tumor-bearing nude mice model in vivo, respectively. DISCUSSION: MSNM@SFN co-administrating with FFA (MSNM@SFN+FFA) developed in this study is an alternative strategy for improving the therapeutic efficacy of MSNM@SFN via co-administration with NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , 20-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Feminino , Ácido Flufenâmico/administração & dosagem , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Dióxido de Silício/química , Sorafenibe/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Hepatology ; 71(1): 148-163, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31155734

RESUMO

The oncogene c-Myc is aberrantly expressed and plays a key role in malignant transformation and progression of hepatocellular carcinoma (HCC). Here, we report that c-Myc is significantly up-regulated by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, in hepatocarcinogenesis. High TRAF6 expression in clinical HCC samples correlates with poor prognosis, and the loss of one copy of the Traf6 gene in Traf6+/- mice significantly impairs liver tumorigenesis. Mechanistically, TRAF6 first interacts with and ubiquitinates histone deacetylase 3 (HDAC3) with K63-linked ubiquitin chains, which leads to the dissociation of HDAC3 from the c-Myc promoter and subsequent acetylation of histone H3 at K9, thereby epigenetically enhancing the mRNA expression of c-Myc. Second, the K63-linked ubiquitination of HDAC3 impairs the HDAC3 interaction with c-Myc and promotes c-Myc protein acetylation, which thereby enhances c-Myc protein stability by inhibiting carboxyl terminus of heat shock cognate 70-kDa-interacting protein-mediated c-Myc ubiquitination and degradation. Importantly, TRAF6/HDAC3/c-Myc signaling is also primed in hepatitis B virus-transgenic mice, unveiling a critical role for a mechanism in inflammation-cancer transition. In clinical specimens, TRAF6 positively correlates with c-Myc at both the mRNA and protein levels, and high TRAF6 and c-Myc expression is associated with an unfavorable prognosis, suggesting that TRAF6 collaborates with c-Myc to promote human hepatocarcinogenesis. Consistently, curbing c-Myc expression by inhibition of TRAF6 activity with a TRAF6 inhibitor peptide or the silencing of c-Myc by small interfering RNA significantly suppressed tumor growth in mice. Conclusion: These findings demonstrate the oncogenic potential of TRAF6 during hepatocarcinogenesis by modulating TRAF6/HDAC3/c-Myc signaling, with potential implications for HCC therapy.


Assuntos
Carcinogênese , Carcinoma Hepatocelular/genética , Genes myc/fisiologia , Histona Desacetilases/fisiologia , Neoplasias Hepáticas/genética , Fator 6 Associado a Receptor de TNF/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Estabilidade Proteica , Células Tumorais Cultivadas
13.
World J Clin Cases ; 7(17): 2542-2548, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31559290

RESUMO

BACKGROUND: Ovarian tumors are common gynecological diseases in children, and the most commonly seen ovarian tumors are germ cell tumors. Robotic surgery is the new access for children ovarian tumors. CASE SUMMARY: From June to October 2017, 4 children with ovarian tumors were admitted and treated in the Department of Pediatric Surgery of People's Liberation Army General Hospital. The mean age, height, and weight of these patients were 7.5 (1-13) years old, 123.75 (71-164) cm, and 36.8 (8.5-69.5) kg, respectively. Robotic-assisted resection of ovarian tumors was performed for all 4 patients. The 3-port approach was used for robotic manipulation. The surgical procedures were as follows. After creation of the pneumoperitoneum, the robotic scope was placed to explore and find the left ovarian tumor. The trocars for robotic arms 1 and 2 were placed at the sites to the lower right and left of the port of the scope. The tumor capsule in the fallopian tube was incised, and the tumor was completely stripped by an electric hook along the junction of the tumor and the capsule. The resected tumor was completely removed using an endobag. The average docking time of the robotic system was 18.5 min, the average operative time was 120 min, and the average blood loss was 20 mL. No drainage tube was placed except in one patient with a mucinous tumor of the ovary. No fever, pelvic fluid, or intestinal obstruction was reported after surgery. No antibiotics were used during the perioperative period, and the average length of hospital stay after surgery was 3 d. CONCLUSION: Robotic-assisted resection of ovarian tumors is a simple, safe, and effective surgical procedure for selected patients.

14.
Autophagy ; 15(9): 1506-1522, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30806153

RESUMO

Aberrant CTNNB1 signaling is one of the fundamental processes in cancers, especially colorectal cancer (CRC). Here, we reported that TRAF6, an E3 ubiquitin ligase important for inflammatory signaling, inhibited epithelial-mesenchymal transition (EMT) and CRC metastasis through driving a selective autophagic CTNNB1 degradation machinery. Mechanistically, TRAF6 interacted with MAP1LC3B/LC3B through its LC3-interacting region 'YxxL' and catalyzed K63-linked polyubiquitination of LC3B. The K63-linked ubiquitination of LC3B promoted the formation of the LC3B-ATG7 complex and was critical to the subsequent recognition of CTNNB1 by LC3B for the selective autophagic degradation. However, TRAF6 was phosphorylated at Thr266 by GSK3B in most clinical CRC, which triggered K48-linked polyubiquitination and degradation of TRAF6 and thereby attenuated its inhibitory activity towards the autophagy-dependent CTNNB1 signaling. Clinically, decreased expression of TRAF6 was associated with elevated GSK3B protein levels and activity and reduced overall survival in CRC patients. Pharmacological inhibition of GSK3B activity stabilized the TRAF6 protein, promoted CTNNB1 degradation, and effectively suppressed EMT and CRC metastasis. Thus, targeting TRAF6 and its pathway may be meaningful for treating advanced CRC. Abbreviations: AMBRA1: autophagy and beclin 1 regulator 1; AOM: azoxymethane; ATG5: autophagy related 5; ATG7: autophagy related 7; Baf A1: bafilomycin A1; BECN1: beclin 1; CoIP: co-immunoprecipitation; CQ: chloroquine; CRC: colorectal cancer; CTNNB1/ß-catenin: catenin beta 1; DSS: dextran sodium sulfate; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; GFP: green fluorescent protein; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; IgG: Immunoglobulin G; IHC: immunohistochemistry; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; RFP: red fluorescent protein; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TRAF6: TNF receptor-associated factor 6; WT: wild-type; ZEB1: zinc finger E-box binding homeobox 1.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Neoplasias Colorretais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , beta Catenina/metabolismo , Motivos de Aminoácidos/genética , Animais , Autofagossomos/ultraestrutura , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Transplante Heterólogo , Ubiquitinação/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , beta Catenina/genética
15.
Int J Nanomedicine ; 14: 195-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636872

RESUMO

BACKGROUND: 3-(2-Nitrophenyl) propionic acid-paclitaxel (NPPA-PTX) is a paclitaxel (PTX) bioreductive prodrug synthesized by our lab. We hypothesize that NPPA-PTX can self-assemble to form nanoparticles (NPs). MATERIALS AND METHODS: In the present research, the theoretical partition coefficient (XlogP) and Hansen solubility parameters of NPPA-PTX were calculated. NPPA-PTX nanoparticles prepared by NPPA-PTX and DSPE-PEG (NPPA-PTX:DSPE-PEG =1:0.1, w/w) (NPPA-PTX@PEG NPs) were prepared and characterized. The cellular uptake, in vitro antitumor activity, in vivo targeting effect, tumor distribution, in vivo antitumor activity, and safety of NPPA-PTX@PEG NPs were investigated. RESULTS: Our results indicate that NPPA-PTX can self-assemble to form NPPA-PTX@PEG NPs. Both the cellular uptake and safety of NPPA-PTX@PEG NPs were higher than those of Taxol. NPPA-PTX@PEG NPs could target tumor tissues by a passive targeting effect. In tumor tissues, NPPA-PTX@PEG NPs could completely transform into active PTX. The in vivo antitumor activity of NPPA-PTX@PEG NPs was confirmed in MDA-MB-231 tumor-bearing nude mice. CONCLUSION: The bioreductive prodrug NPPA-PTX could self-assemble to form NPs. The safety and antitumor activity of NPPA-PTX@PEG were confirmed in our in vitro and in vivo experiments. The NPPA-PTX@PEG NPs developed in this study could offer a new way of preparing bioreductive prodrug, self-assembled NPs suitable for antitumor therapy.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Nanopartículas/administração & dosagem , Paclitaxel/análogos & derivados , Fenilpropionatos/farmacologia , Pró-Fármacos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Fenilpropionatos/administração & dosagem , Pró-Fármacos/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Control Release ; 295: 102-117, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30582952

RESUMO

Nucleus-targeting drug delivery systems (NTDDs) deliver chemotherapeutic agents to nuclei in order to improve the efficacy of anti-tumour therapy. Histone H1 (H1) plays a key role in establishing and maintaining higher order chromatin structures and could bind to cell membranes. In the present study, we selected H1 as a target to prepare a novel H1-mediated NTDD. Low molecular weight heparin (LMHP) and doxorubicin (DOX) were combined to form LMHP-DOX. Then, a novel NTDD consisting of LMHP-DOX nanoparticles (LMHP-DOX NPs) was prepared by self-assembly. The characteristics of LMHP-DOX and LMHP-DOX NPs were investigated. Histone H1 high-expressive prostate cancer PC-3M cell line was selected as the cell model. Cellular uptake, and the in vitro and in vivo anti-tumour activity of LMHP-DOX NPs were evaluated on H1 high-expressive human prostate cancer PC-3M cells. Our results indicated that intact LMHP-DOX NPs mediated by H1 could be absorbed by H1 high-expressive PC-3M cells, escape from the lysosomes to the cytoplasm, and localize in the perinuclear region via H1-mediated, whereby DOX could directly enter the cell nucleus and quickly increase the concentration of DOX in the nuclei of H1 high-expressive PC-3M cells to enhance the apoptotic activity of cancer cells. The anti-coagulant activity of LMHP-DOX NPs was almost completely diminished in rat blood compared with that of LMHP, indicating the safety of LMHP-DOX NPs. Compared to traditional NTDD strategies, LMHP-DOX NPs avoid the complicated modification of nucleus-targeting ligands and provide a compelling solution for the substantially enhanced nuclear uptake of chemotherapeutic agents for the development of more intelligent NTDDs.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Heparina de Baixo Peso Molecular/administração & dosagem , Histonas/análise , Neoplasias da Próstata/tratamento farmacológico , Animais , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacocinética , Anticoagulantes/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Heparina de Baixo Peso Molecular/farmacocinética , Heparina de Baixo Peso Molecular/farmacologia , Humanos , Masculino , Nanopartículas/ultraestrutura , Células PC-3 , Neoplasias da Próstata/patologia , Ratos Sprague-Dawley
17.
J Hematol Oncol ; 11(1): 95, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016968

RESUMO

BACKGROUND: Ubiquitination is a basic post-translational modification for cellular homeostasis, and members of the conjugating enzyme (E2) family are the key components of the ubiquitin-proteasome system. However, the role of E2 family in colorectal cancer (CRC) is largely unknown. Our study aimed to investigate the role of Ube2v1, one of the ubiquitin-conjugating E2 enzyme variant proteins (Ube2v) but without the conserved cysteine residue required for the catalytic activity of E2s, in CRC. METHODS: Immunohistochemistry and real-time RT-PCR were used to study the expressions of Ube2v1 at protein and mRNA levels in CRC, respectively. Western blotting and immunofluorescence, transmission electron microscopy, and in vivo rescue experiments were used to study the functional effects of Ube2v1 on autophagy and EMT program. Quantitative mass spectrometry, immunoprecipitation, ubiquitination assay, western blotting, and real-time RT-PCR were used to analyze the effects of Ube2v1 on histone H4 lysine 16 acetylation, interaction with Sirt1, ubiquitination of Sirt1, and autophagy-related gene expression. RESULTS: Ube2v1 was elevated in CRC samples, and its increased expression was correlated with poorer survival of CRC patients. Ube2v1 promoted migration and invasion of CRC cells in vitro and tumor growth and metastasis of CRC cells in vivo. Interestingly, Ube2v1suppressed autophagy program and promoted epithelial mesenchymal transition (EMT) and metastasis of CRC cells in an autophagy-dependent pattern in vitro and in vivo. Moreover, both rapamycin and trehalose attenuated the enhanced Ube2v1-mediated lung metastasis by inducing the autophagy pathway in an orthotropic mouse xenograft model of lung metastasis. Mechanistically, Ube2v1 promoted Ubc13-mediated ubiquitination and degradation of Sirt1 and inhibited histone H4 lysine 16 acetylation, and finally epigenetically suppressed autophagy gene expression in CRC. CONCLUSIONS: Our study functionally links Ube2v1, an E2 member in the ubiquitin-proteasome system, to autophagy program, thereby shedding light on developing Ube2v1 targeted therapy for CRC patients.


Assuntos
Neoplasias Colorretais/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Autofagia/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Epigênese Genética , Transição Epitelial-Mesenquimal , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Ubiquitinação
18.
Oncotarget ; 9(15): 12035-12049, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29552291

RESUMO

The pathogenesis and key functional molecules involved in inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) remain unclear. Here, we reported that Erbin, a protein required for the polarity of epithelial cells, is conserved across species and highly expressed in the intestinal mucosa in mice and zebrafish. Pathologically, Erbin expression in the intestinal mucosa was significantly decreased in DSS induced acute colitis mice, IL-10 deficient mice and clinical biopsy specimens from patients with ulcerative colitis. Moreover, Erbin deficient mice are more susceptible to experimental colitis, exhibiting more severe intestinal barrier disruption, with increased histological scores and excessive production of proinflammatory cytokines. Mechanistically, Erbin deficiency or knockdown significantly exacerbated activation of autophagic program and autophagic cell death in vivo and in vitro. And, inhibition of autophagy by Chloroquine attenuates excessive inflammatory response in the DSS-induced colitis mouse model of Erbin deletion. Generally, our study uncovers a crucial role of Erbin in autophagic cell death and IBD, giving rise to a new strategy for IBD therapy by inhibiting excessive activation of autophagy and autophagic cell death.

19.
Oncotarget ; 8(34): 55776-55789, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915552

RESUMO

Emerging evidence indicates that microRNAs, a class of small and well-conserved noncoding RNAs, participate in many physiological and pathological processes. RNase III endonuclease DICER is one of the key enzymes for microRNA biogenesis. Here, we found that DICER was downregulated in tumor samples of colorectal cancer (CRC) patients at both mRNA and protein levels. Importantly, intestinal epithelial cell (IEC)-specific deletion of Dicer mice got more tumors after azoxymethane and dextran sulfate sodium (DSS) administration. Interestingly, IEC-specific deletion of Dicer led to severe chronic inflammation and epithelium layer remodeling in mice with or without DSS administration. Microarray analysis of 3 paired Dicer deletion CRC cell lines showed that miR-324-5p was one of the most significantly decreased miRNAs. In the intestinal epithelium of IEC-specific deletion of Dicer mice, miR-324-5p was also found to be markedly reduced. Mechanistically, miR-324-5p directly bound to the 3'untranslated regions (3'UTRs) of HMG-box containing 3 (HMGXB3) and WAS protein family member 2 (WASF-2), two key proteins participated in cell motility and cytoskeleton remodeling, to suppress their expressions. Intraperitoneal injection of miR-324-5p AgomiR (an agonist of miR-324-5p) curtailed chronic inflammation and cytoskeleton remodeling of colorectal epithelium and restored intestinal barrier function in IEC-specific deletion of Dicer mice induced by DSS. Therefore, our study reveals a key role of a DICER/miR-324-5p/HMGXB3/WASF-2 axis in tumorigenesis of CRC by regulation of cytoskeleton remodeling and maintaining integrity of intestinal barriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA