Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Clin Transl Med ; 14(5): e1681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725048

RESUMO

BACKGROUND: We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS: Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS: The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS: In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteínas de Ligação a RNA , Vitamina D , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células/genética , Camundongos , Animais
2.
Nano Lett ; 24(19): 5690-5698, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700237

RESUMO

Long-term tumor starvation may be a potential strategy to elevate the antitumor immune response by depriving nutrients. However, combining long-term starvation therapy with immunotherapy often yields limited efficacy due to the blockage of immune cell migration pathways. Herein, an intelligent blood flow regulator (BFR) is first established through photoactivated in situ formation of the extravascular dynamic hydrogel to compress blood vessels, which can induce long-term tumor starvation to elicit metabolic stress in tumor cells without affecting immune cell migration pathways. By leveraging methacrylate-modified nanophotosensitizers (HMMAN) and biodegradable gelatin methacrylate (GelMA), the developed extravascular hydrogel dynamically regulates blood flow via enzymatic degradation. Additionally, aPD-L1 loaded into HMMAN continuously blocks immune checkpoints. Systematic in vivo experiments demonstrate that the combination of immune checkpoint blockade (ICB) and BFR-induced metabolic stress (BIMS) significantly delays the progression of Lewis lung and breast cancers by reshaping the tumor immunogenic landscape and enhancing antitumor immune responses.


Assuntos
Hidrogéis , Hidrogéis/química , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Feminino , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Imunoterapia , Gelatina/química , Metacrilatos/química , Metacrilatos/farmacologia , Neoplasias da Mama/imunologia
3.
Front Pharmacol ; 15: 1322473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694912

RESUMO

Context: Cabozantinib combined with immune checkpoint inhibitors (ICIs) has brought a new therapeutic effect for the medical treatment of renal cell carcinoma (RCC). Objectives: We performed a meta-analysis of randomized controlled trials and single-arm trials to evaluate the efficacy and safety of cabozantinib plus ICIs in RCC. Methods: We extracted data from PubMed, Cochrane, Medline and Embase databases, and rated literature quality through Cochrane risk of bias tool and MINORS. RevMan5.3 software was used to analyze the results of randomized controlled trials and single-arm trials. Results: A total of 7 studies were included. Treatment with cabozantinib plus ICIs improved PFS [HR 0.75, (95%CI: 0.52, 1.08), p = 0.12] and the OS [HR 0.80, (95%CI: 0.60, 1.07), p = 0.13] in randomized controlled trials. Meanwhile, the result of the ORR in randomized controlled trials was [risk ratio (RR) 1.37, (95%CI: 1.21, 1.54), p < 0.00001] and in single-arm trials was [risk difference (RD) 0.49, (95%CI: 0.26, 0.71), p < 0.0001]. Conclusion: Cabozantinib plus ICIs prolonged the PFS and OS, and improved ORR in patients with RCC. Our recommendation is to use cabozantinib plus ICIs to treat advanced RCC, and to continuous monitor and manage the drug-related adverse events. Systematic Review Registration: identifier CRD42023455878.

4.
Ann Med ; 56(1): 2282184, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738386

RESUMO

AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.


AURKA plays an important role in the control of the proliferation, invasion, cell cycle regulation and self-renewal of cancer stem cells.Small molecule kinase inhibitors targeting AURKA have been developed, but the overall response rate of patients in clinical trials is not ideal, prompting us to pay attention to the non-kinase activity of AURKA.This review focuses on the nuclear function of AURKA and its oncogenic properties independent of kinase activity, demonstrating that the nuclear substrate of AURKA and the remote allosteric site of the kinase may be targets of anticancer therapy.


Assuntos
Aurora Quinase A , Carcinogênese , Núcleo Celular , Humanos , Aurora Quinase A/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Animais
5.
Signal Transduct Target Ther ; 9(1): 98, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609366

RESUMO

Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (ß) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor ß. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.


Assuntos
COVID-19 , Diabetes Mellitus , Adulto , Animais , Humanos , Idoso , SARS-CoV-2 , Receptor de Insulina , Peptídeo C , DNA Helicases , Estudos Retrospectivos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Glucose
6.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566395

RESUMO

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Língua/metabolismo , Língua/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
7.
Gut Pathog ; 16(1): 25, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678229

RESUMO

BACKGROUND: Peutz-Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots, gastrointestinal polyps and increased susceptibility to cancers. Currently, most studies have investigated intestinal microbiota through fecal microbiota, and there are few reports about mucosa-associated microbiota. It remains valuable to search for the key intestinal microbiota or abnormal metabolic pathways linked to PJS. AIM: This study aimed to assess the structure and composition of mucosa-associated microbiota in patients with PJS and to explore the potential influence of intestinal microbiota disorders and metabolite changes on PJS. METHODS: The bacterial composition was analyzed in 13 PJS patients and 12 controls using 16S rRNA gene sequencing (Illumina MiSeq) for bacteria. Differential analyses of the intestinal microbiota were performed from the phylum to species level. Liquid chromatography-tandem mass spectrometry (LC‒MS) was used to detect the differentially abundant metabolites of PJS patients and controls to identify different metabolites and metabolic biomarkers of small intestinal mucosa samples. RESULTS: High-throughput sequencing confirmed the special characteristics and biodiversity of the mucosa microflora in patients with PJS. They had lower bacterial biodiversity than controls. The abundance of intestinal mucosal microflora was significantly lower than that of fecal microflora. In addition, lipid metabolism, amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and other pathways were significantly different from those of controls, which were associated with the development of the enteric nervous system, intestinal inflammation and development of tumors. CONCLUSION: This is the first report on the mucosa-associated microbiota and metabolite profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.

8.
Micromachines (Basel) ; 15(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675332

RESUMO

A high porosity micropore arrayed parylene membrane is a promising device that is used to capture circulating and exfoliated tumor cells (CTCs and ETCs) for liquid biopsy applications. However, its fabrication still requires either expensive equipment or an expensive process. Here, we report on the fabrication of high porosity (>40%) micropore arrayed parylene membranes through a simple reactive ion etching (RIE) that uses photoresist as the etching mask. Vertical sidewalls were observed in etched parylene pores despite the sloped photoresist mask sidewalls, which was found to be due to the simultaneous high DC-bias RIE induced photoresist melting and substrate pedestal formation. A theoretical model has been derived to illustrate the dependence of the maximum membrane thickness on the final pore-to-pore spacing, and it is consistent with the experimental data. A simple, yet accurate, low number (<50) cell counting method was demonstrated through counting cells directly inside a pipette tip under phase-contrast microscope. Membranes as thin as 3 µm showed utility for low number tumor cell capture, with an efficiency of 87-92%.

9.
Exp Dermatol ; 33(4): e15078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610097

RESUMO

Cutaneous wound healing is a challenge in plastic and reconstructive surgery. In theory, cells undergoing mesenchymal transition will achieve re-epithelialization through mesenchymal-epithelial transition at the end of wound healing. But in fact, some pathological stimuli will inhibit this biological process and result in scar formation. If mesenchymal-epithelial transition can be activated at the corresponding stage, the ideal wound healing may be accomplished. Two in vivo skin defect mouse models and dermal-derived mesenchymal cells were used to evaluate the effect of lithium chloride in wound healing. The mesenchymal-epithelial transition was detected by immunohistochemistry staining. In vivo, differentially expressed genes were analysed by transcriptome analyses and the subsequent testing was carried out. We found that lithium chloride could promote murine cutaneous wound healing and facilitate mesenchymal-epithelial transition in vivo and in vitro. In lithium chloride group, scar area was smaller and the collagen fibres are also orderly arranged. The genes related to mesenchyme were downregulated and epithelial mark genes were activated after intervention. Moreover, transcriptome analyses suggested that this effect might be related to the inhibition of CXCL9 and IGF2, subsequent assays demonstrated it. Lithium chloride can promote mesenchymal-epithelial transition via downregulating CXCL9 and IGF2 in murine cutaneous wound healing, the expression of IGF2 is regulated by ß-catenin. It may be a potential promising therapeutic drug for alleviating postoperative scar and promoting re-epithelialization in future.


Assuntos
Cicatriz , Cloreto de Lítio , Animais , Camundongos , Cloreto de Lítio/farmacologia , Diferenciação Celular , Cicatrização , Pele
10.
Cell Oncol (Dordr) ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564164

RESUMO

INTRODUCTION: Chimeric antigen receptor (CAR)-T cells obtained long-term durability in about 30% to 40% of relapsed/refractory (r/r) B-cell non-Hodgkin lymphoma (B-NHL). Maintenance therapy after CAR-T is necessary, and PD1 inhibitor is one of the important maintenance therapy options. METHODS: A total of 173 r/r B-NHL patients treated with PD1 inhibitor maintenance following CD19/22 CAR-T therapy alone or combined with autologous hematopoietic stem cell transplantation (ASCT) from March 2019 to July 2022 were assessed for eligibility for two trials. There were 81 patients on PD1 inhibitor maintenance therapy. RESULTS: In the CD19/22 CAR-T therapy trial, the PD1 inhibitor maintenance group indicated superior objective response rate (ORR) (82.9% vs 60%; P = 0.04) and 2-year progression-free survival (PFS) (59.8% vs 21.3%; P = 0.001) than the non-maintenance group. The estimated 2-year overall survival (OS) was comparable in the two groups (60.1% vs 45.1%; P = 0.112). No difference was observed in the peak expansion levels of CD19 CAR-T and CD22 CAR-T between the two groups. The persistence time of CD19 and CD22 CAR-T in the PD1 inhibitor maintenance group was longer than that in the non-maintenance group. In the CD19/22 CAR-T therapy combined with ASCT trial, no significant differences in ORR (81.4% vs 84.8%; P = 0.67), 2-year PFS (72.3% vs 74.9%; P = 0.73), and 2-year OS (84.1% vs 80.7%; P = 0.79) were observed between non-maintenance and PD1 inhibitor maintenance therapy groups. The peak expansion levels and duration of CD19 and CD22 CAR-T were not statistically different between the two groups. During maintenance treatment with PD1 inhibitor, all adverse events were manageable. In the multivariable analyses, type and R3m were independent predictive factors influencing the OS of r/r B-NHL with PD1 inhibitor maintenance after CAR-T therapy. CONCLUSION: PD1 inhibitor maintenance following CD19/22 CAR-T therapy obtained superior response and survival in r/r B-NHL, but not in the trial of CD19/22 CAR-T cell therapy combined with ASCT.

11.
Animal Model Exp Med ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590118

RESUMO

BACKGROUND: Breast cancer is the most common cancer in women, and in advanced stages, it often metastasizes to the brain. However, research on the biological mechanisms of breast cancer brain metastasis and potential therapeutic targets are limited. METHODS: Differential gene expression analysis (DEGs) for the datasets GSE43837 and GSE125989 from the GEO database was performed using online analysis tools such as GEO2R and Sangerbox. Further investigation related to SULF1 was conducted using online databases such as Kaplan-Meier Plotter and cBioPortal. Thus, expression levels, variations, associations with HER2, biological processes, and pathways involving SULF1 could be analyzed using UALCAN, cBioPortal, GEPIA2, and LinkedOmics databases. Moreover, the sensitivity of SULF1 to existing drugs was explored using drug databases such as RNAactDrug and CADSP. RESULTS: High expression of SULF1 was associated with poor prognosis in advanced breast cancer brain metastasis and was positively correlated with the expression of HER2. In the metastatic breast cancer population, SULF1 ranked top among the 16 DEGs with the highest mutation rate, reaching 11%, primarily due to amplification. KEGG and GSEA analyses revealed that the genes co-expressed with SULF1 were positively enriched in the 'ECM-receptor interaction' gene set and negatively enriched in the 'Ribosome' gene set. Currently, docetaxel and vinorelbine can act as treatment options if the expression of SULF1 is high. CONCLUSIONS: This study, through bioinformatics analysis, unveiled SULF1 as a potential target for treating breast cancer brain metastasis (BM).

12.
In Vitro Cell Dev Biol Anim ; 60(4): 382-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625487

RESUMO

It is necessary to explore new targets for the treatment of colon adenocarcinoma (COAD) according to the tumor microenvironment. The expression levels of JAML and CXADR were analyzed by bioinformatics analysis and validation of clinical samples. JAML over-expression CD8+ T cell line was constructed, and the proliferation activity was detected by MTT. The production of inflammatory factors was detected by ELISA. The expression of immune checkpoint PD-1 and TIM-3 was detected by Western blot. The apoptosis level was detected by flow cytometry and apoptosis markers. The AOM/DSS mouse model of colorectal cancer was constructed. The expression levels of JAML, CXADR and PD-1 were detected by PCR and Western blot, and the proportion of CD8+ T cells and exhausted T cells were detected by flow cytometry. The expression levels of JAML and CXADR were significantly decreased in colon cancer tissues. Overexpression of JAML can promote the proliferation of T cells, secrete a variety of inflammatory factors. Overexpression of CXADR can reduce the proliferation of colorectal cancer cells, promote apoptosis, and down-regulate the migration and invasion ability of tumor cells. Both JAML agonists and PD-L1 inhibitors can effectively treat colorectal cancer, and the combined use of JAML agonists and PD-L1 inhibitors can enhance the effect. JAML can promote the proliferation and toxicity of CD8+ T cells and down-regulate the expression of immune checkpoints in colon cancer. CXADR can inhibit the proliferation of cancer cells and promote the apoptosis. JAML agonist can effectively treat colorectal cancer by regulating CD8+ T cells.


Assuntos
Apoptose , Linfócitos T CD8-Positivos , Carcinogênese , Proliferação de Células , Neoplasias Colorretais , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Humanos , Proliferação de Células/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Carcinogênese/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Masculino
13.
Expert Rev Anticancer Ther ; 24(5): 293-302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551185

RESUMO

OBJECTIVES: To provide a more comprehensive understanding of the efficacy and safety profile of cabozantinib versus placebo in malignant tumors, we conducted a systematic review and meta-analysis. This involved analyzing a collection of published randomized controlled trials to assess the outcomes. METHODS: We used RevMan5.3 software to evaluate the outcomes of the collected studies. The primary outcome we focused on was progression-free survival (PFS), and the secondary outcomes included overall survival (OS) and disease control rate (DCR). RESULTS: Our findings revealed that compared to placebo, cabozantinib significantly extended the PFS of patients [hazard ratios (HR) 0.37, 95% confidence intervals (CI): 0.32, 0.43, p < 0.00001]. Additionally, cabozantinib improved the OS of patients [HR 0.78, 95%CI: 0.68, 0.91, p = 0.002]. While it is important to note that cabozantinib was associated with a higher likelihood of causing digestive, cutaneous, and cardiovascular related adverse events [relative risk (RR) 4.40, 95% CI: 3.10, 6.25, p < 0.00001]. CONCLUSION: Based on our analysis, cabozantinib significantly prolonged the PFS and OS of patients with malignant tumors (p < 0.01). We recommend the use of cabozantinib in treating advanced malignant tumors. However, it is important to continuously monitor and manage the drug-related adverse events. REGISTRATION: PROSPERO (No. CRD42023449261).


Assuntos
Anilidas , Antineoplásicos , Neoplasias , Intervalo Livre de Progressão , Piridinas , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Piridinas/efeitos adversos , Piridinas/administração & dosagem , Piridinas/farmacologia , Anilidas/efeitos adversos , Anilidas/administração & dosagem , Anilidas/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Taxa de Sobrevida , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Intervalo Livre de Doença
14.
Front Neurol ; 15: 1334000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487325

RESUMO

Background: The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment outcomes in patients with lymphoid malignancies. However, several studies have reported a relatively high rate of infection in adult patients following CD19-targeting CAR T-cell therapy, particularly in the first 28 days. Notably, acute human herpesvirus 6 B (HHV6B) reactivation occurs in up to two-thirds of allogeneic hematopoietic stem cell transplantation patients. Case presentations: Herein, we describe a report of HHV6B encephalitis/myelitis in three patients with relapsed/refractory diffuse large B-cell lymphoma post CAR T-cell therapy. All three patients received multiple lines of prior treatment (range: 2-9 lines). All patients presented with fever that persisted for at least 2 weeks after CAR-T cell infusion (CTI). Both the onset time and duration were similar to those of the cytokine release syndrome (CRS); nevertheless, the CRS grades of the patients were low (grade 1 or 2). Delirium and memory loss after CTI were the earliest notable mental presentations. Neurological manifestations progressed rapidly, with patients experiencing varying degrees of impaired consciousness, seizures, and coma. Back pain, lumbago, lower limb weakness and uroschesis were also observed in Patient 3, indicating myelitis. High HHV6B loads were detected in all Cerebral spinal fluid (CSF) samples using metagenomic next-generation sequencing (mNGS). Only one patient required high-activity antivirals and IgG intravenous pulse treatment finally recovered, whereas the other two patients died from HHV6B encephalitis. Conclusion: Considering its fatal potential, HHV6B encephalitis/myelitis should be urgently diagnosed post CAR-T cell-based therapy. Furthermore, hematologists should differentially diagnose these conditions from CRS or other immunotherapy-related neurotoxicities as early as possible. The results of this study demonstrate the potential of mNGS in the early diagnosis of HHV6B infection, particularly when the organism is difficult to culture.

15.
BMC Plant Biol ; 24(1): 187, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481163

RESUMO

BACKGROUND: As the second largest leafy vegetable, cabbage (Brassica oleracea L. var. capitata) is grown globally, and the characteristics of the different varieties, forms, and colors of cabbage may differ. In this study, five analysis methods-variance analysis, correlation analysis, cluster analysis, principal component analysis, and comprehensive ranking-were used to evaluate the quality indices (soluble protein, soluble sugar, and nitrate), antioxidant content (vitamin C, polyphenols, and flavonoids), and mineral (K, Ca, Mg, Cu, Fe, Mn, and Zn) content of 159 varieties of four forms (green spherical, green oblate, purple spherical, and green cow heart) of cabbage. RESULTS: The results showed that there are significant differences among different forms and varieties of cabbage. Compared to the other three forms, the purple spherical cabbage had the highest flavonoid, K, Mg, Cu, Mn, and Zn content. A scatter plot of the principal component analysis showed that the purple spherical and green cow heart cabbage varieties were distributed to the same quadrant, indicating that their quality indices and mineral contents were highly consistent, while those of the green spherical and oblate varieties were irregularly distributed. Overall, the green spherical cabbage ranked first, followed by the green cow heart, green oblate, and purple spherical varieties. CONCLUSIONS: Our results provide a theoretical basis for the cultivation and high-quality breeding of cabbage.


Assuntos
Antioxidantes , Brassica , Antioxidantes/metabolismo , Brassica/genética , Brassica/metabolismo , Melhoramento Vegetal , Flavonoides/metabolismo , Minerais/metabolismo
16.
Transplant Cell Ther ; 30(5): 500-509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447750

RESUMO

BACKGROUND: Recombinant human TPO (rhTPO) promotes platelet engraftment in patients after allogeneic HSCT (allo-HSCT). However, the effects of rhTPO on platelet recovery after Haplo-HSCT in patients with severe aplastic anemia (SAA) have not been intensively studied. OBJECTIVE: We aimed to evaluate the efficacy of rhTPO on platelet engraftment in patients with SAA who were treated with Haplo-HSCT using post-transplantation cyclophosphamide (PTCy). STUDY DESIGN: SAA patients who received Haplo-HSCT plus PTCy regimen were divided into the rhTPO group (with subcutaneous injection of rhTPO, n = 28) and Control group (no rhTPO administration, n = 27). The engraftment of platelet/neutrophil, platelet infusion amount, and transplant-related complications between the 2 groups were compared. RESULTS: All 55 patients showed successful hematopoietic reconstitution. The median time of platelet engraftment was 11 (9 to 29) days in the rhTPO group and 14 (9 to 28) days in the Control group (P = .003). The rhTPO group had a significantly reduced amount of infused platelets compared to the Control group (2 (1 to 11.5) versus 3 (1 to 14) therapeutic doses; P = .004). There was no significant difference between the 2 groups regarding median time of neutrophil engraftment, incidence of acute graft-versus-host disease (aGVHD) and chronic GVHD (cGVHD), incidence of cytomegalovirus or Epstein-Barr virus reactivation, 3-yr overall survival rate, and failure-free-survival rate. No obvious adverse reactions were observed in the rhTPO group. CONCLUSION: rhTPO promoted platelet engraftment, reduced the amount of transfused platelets, and demonstrated good safety profiles without evidence of adverse reactions in patients with SAA who received Haplo-HSCT using PTCy regimen.


Assuntos
Anemia Aplástica , Plaquetas , Ciclofosfamida , Transplante de Células-Tronco Hematopoéticas , Proteínas Recombinantes , Trombopoetina , Humanos , Anemia Aplástica/terapia , Masculino , Ciclofosfamida/uso terapêutico , Feminino , Adulto , Transplante de Células-Tronco Hematopoéticas/métodos , Trombopoetina/uso terapêutico , Trombopoetina/administração & dosagem , Adolescente , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Plaquetas/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto Jovem , Criança , Doença Enxerto-Hospedeiro , Transfusão de Plaquetas , Transplante Haploidêntico
17.
Am J Cancer Res ; 14(2): 407-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455407

RESUMO

Thyroid cancer can be classified into three different types based on the degree of differentiation: well-differentiated, poorly differentiated, and anaplastic thyroid carcinoma. Well-differentiated thyroid cancer refers to cancer cells that closely resemble normal thyroid cells, while poorly differentiated and anaplastic thyroid carcinoma are characterized by cells that have lost their resemblance to normal thyroid cells. Advanced thyroid carcinoma, regardless of its degree of differentiation, is known to have a higher likelihood of disease progression and is generally associated with a poor prognosis. However, the process through which well-differentiated thyroid carcinoma transforms into anaplastic thyroid carcinoma, also known as "dedifferentiation", has been a subject of intensive research. In recent years, there have been significant breakthroughs in the treatment of refractory advanced thyroid cancer. Clinical studies have been conducted to evaluate the efficacy and safety of molecular targeted drugs and immune checkpoint inhibitors in the treatment of dedifferentiated thyroid cancer. These drugs work by targeting specific molecules or proteins in cancer cells to inhibit their growth or by enhancing the body's immune response against the cancer cells. This article aims to explore some of the possible mechanisms behind the dedifferentiation process in well-differentiated thyroid carcinoma. It also discusses the clinical effects of molecular targeted drugs and immune checkpoint inhibitors in thyroid cancer patients with different degrees of differentiation. Furthermore, it offers insights into the future trends in the treatment of advanced thyroid cancer, highlighting the potential for improved outcomes and better patient care.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38554227

RESUMO

The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.

19.
ACS Omega ; 9(10): 12101-12115, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497005

RESUMO

To minimize errors in calculating coal flue gas adsorption capacity due to gas compressibility and to preclude prediction inaccuracies in abandoned mine flue gas storage capacity for power plants, it is imperative to account for the influence of compression factor calculation accuracy while selecting the optimal theoretical adsorption model. In this paper, the flue gas adsorption experiment of a power plant with coal samples gradually pressurized to close to 5 MPa at two different temperatures is carried out, and the temperature and pressure data obtained from the experiment are substituted into five different compression factor calculation methods to calculate different absolute adsorption amounts. The calculated adsorption capacities were fitted into six theoretical adsorption models to establish a predictive model suitable for estimating the coal adsorption capacity in power plant flue gas. Results reveal significant disparities in the absolute adsorption capacity determined by different compression factors, with an error range of 0.001278-7.8262 (cm3/kg). The Redlich-Kwong equation of state emerged as the most suitable for the flue gas of the selected experimental coal sample and the chosen composition ratio among the five compression factors. Among the six theoretical adsorption models, the Brunauer-Emmett-Teller model with three parameters demonstrated the highest suitability for predicting the adsorption capacity of coal samples in power plant smoke, achieving a fitting accuracy as high as 0.9922 at 49.7 °C.

20.
Front Immunol ; 15: 1375143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510247

RESUMO

This comprehensive review delves into the complex interplay between mitochondrial gene defects and pancreatic cancer pathogenesis through a multiomics approach. By amalgamating data from genomic, transcriptomic, proteomic, and metabolomic studies, we dissected the mechanisms by which mitochondrial genetic variations dictate cancer progression. Emphasis has been placed on the roles of these genes in altering cellular metabolic processes, signal transduction pathways, and immune system interactions. We further explored how these findings could refine therapeutic interventions, with a particular focus on precision medicine applications. This analysis not only fills pivotal knowledge gaps about mitochondrial anomalies in pancreatic cancer but also paves the way for future investigations into personalized therapy options. This finding underscores the crucial nexus between mitochondrial genetics and oncological immunology, opening new avenues for targeted cancer treatment strategies.


Assuntos
Neoplasias Pancreáticas , Proteômica , Humanos , Genes Mitocondriais , Multiômica , Neoplasias Pancreáticas/terapia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA