Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
World J Gastrointest Oncol ; 16(5): 2113-2122, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764823

RESUMO

BACKGROUND: Accumulating evidence has shown that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective therapeutic approach for managing coronavirus disease 2019 (COVID-19); however, further elucidation is required to determine their underlying immunomodulatory effect on the mRNA expression of T helper cell-related transcription factors (TFs) and cytokine release in peripheral blood mononuclear cells (PBMCs). AIM: To investigate the impact of ADSCs on the mRNA expression of TFs and cytokine release in PBMCs from colorectal cancer (CRC) patients with severe COVID-19 (CRC+ patients). METHODS: PBMCs from CRC+ patients (PBMCs-C+) and age-matched CRC patients (PBMCs-C) were stimulated and cultured in the presence/absence of ADSCs. The mRNA levels of T-box TF TBX21 (T-bet), GATA binding protein 3 (GATA-3), RAR-related orphan receptor C (RORC), and forkhead box P3 (FoxP3) in the PBMCs were determined by reverse transcriptase-polymerase chain reaction. Culture supernatants were evaluated for levels of interferon gamma (IFN-γ), interleukin 4 (IL-4), IL-17A, and transforming growth factor beta 1 (TGF-ß1) using an enzyme-linked immunosorbent assay. RESULTS: Compared with PBMCs-C, PBMCs-C+ exhibited higher mRNA levels of T-bet and RORC, and increased levels of IFN-γ and IL-17A. Additionally, a significant decrease in FoxP3 mRNA and TGF-ß1, as well as an increase in T-bet/GATA-3, RORC/FoxP3, IFN-γ/IL-4, and IL-17A/TGF-ß1 ratios were observed in PBMCs-C+. Furthermore, ADSCs significantly induced a functional regulatory T cell (Treg) subset, as evidenced by an increase in FoxP3 mRNA and TGF-ß1 release levels. This was accompanied by a significant decrease in the mRNA levels of T-bet and RORC, release of IFN-γ and IL-17A, and T-bet/GATA-3, RORC/FoxP3, IFN-γ/IL-4, and IL-17A/TGF-ß1 ratios, compared with the PBMCs-C+alone. CONCLUSION: The present in vitro studies showed that ADSCs contributed to the immunosuppressive effects on PBMCs-C+, favoring Treg responses. Thus, ADSC-based cell therapy could be a beneficial approach for patients with severe COVID-19 who fail to respond to conventional therapies.

2.
Chemosphere ; 358: 142192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701862

RESUMO

Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.


Assuntos
Arsênio , Poluentes do Solo , Solo , Arsênio/análise , Arsênio/química , Humanos , Poluentes do Solo/análise , Poluentes do Solo/química , Medição de Risco , Solo/química , Monitoramento Ambiental , Disponibilidade Biológica , China
3.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611934

RESUMO

Spirotryprostatin alkaloids, a class of alkaloids with a unique spirocyclic indoledionepiperazine structure, were first extracted from the fermentation broth of Aspergillus fumigatus and have garnered significant attention in the fields of biology and pharmacology. The investigation into the pharmacological potential of this class of alkaloids has unveiled promising applications in drug discovery and development. Notably, certain spirotryprostatin alkaloids have demonstrated remarkable anti-cancer activity, positioning them as potential candidates for anti-tumor drug development. In recent years, organic synthetic chemists have dedicated efforts to devise efficient and viable strategies for the total synthesis of spirotryprostatin alkaloids, aiming to meet the demands within the pharmaceutical domain. The construction of the spiro-C atom within the spirotryprostatin scaffold and the chirality control at the spiro atomic center emerge as pivotal aspects in the synthesis of these compounds. This review categorically delineates the synthesis of spirotryprostatin alkaloids based on the formation mechanism of the spiro-C atom.


Assuntos
Alcaloides , Fermentação , Aspergillus fumigatus , Descoberta de Drogas
4.
Sci Total Environ ; 926: 171809, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513845

RESUMO

Soil cadmium (Cd) can affect crop growth and food safety, and through the enrichment in the food chain, it ultimately poses a risk to human health. Reducing the re-mobilization of Cd caused by the release of protons and acids by crops and microorganisms after stabilization is one of the significant technical challenges in agricultural activities. This study aimed to investigate the re-mobilization of stabilized Cd within the clay mineral-bound fraction of soil and its subsequent accumulation in crops utilizing nitrogen ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N), at 60 and 120 mg kg-1. Furthermore, the study harvested root exudates at various growth stages to assess their direct influence on the re-mobilization of stabilized Cd and to evaluate the indirect effects mediated by soil microorganisms. The results revealed that, in contrast to the NO3--N treatment, the NH4+-N treatment significantly enhanced the conversion of clay mineral-bound Cd in the soil to NH4NO3-extractable Cd. It also amplified the accumulation of Cd in edible amaranth, with concentrations in roots and shoots rising from 1.7-6.0 mg kg-1 to 4.3-9.8 mg kg-1. The introduction of NH4+-N caused a decrease in the pH value of the rhizosphere soil and stimulated the production and secretion organic and amino acids, such as oxalic acid, lactic acid, stearic acid, succinic acid, and l-serine, from the crop roots. Furthermore, compared to NO3--N, the combined interaction of root exudates with NH4+-N has a more pronounced impact on the abundance of microbial genes associated with glycolysis pathway and tricarboxylic acid cycle, such as pkfA, pfkB, sucB, sucC, and sucD. The effects of NH4+-N on crops and microorganisms ultimately result in a significant increase in the re-mobilization of stabilized Cd. However, the simulated experiments showed that microorganisms only contribute to 3.8-6.6 % of the re-mobilization of clay mineral-bound Cd in soil. Therefore, the fundamental strategy to inhibit the re-mobilization of stabilized Cd in vegetable cultivation involves the regulation of proton and organic acid secretion by crops.


Assuntos
Poluentes do Solo , Solo , Humanos , Solo/química , Cádmio/análise , Argila , Nitrogênio/metabolismo , Compostos Orgânicos/metabolismo , Produtos Agrícolas/metabolismo , Minerais/metabolismo , Fertilização , Poluentes do Solo/análise
5.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463028

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases
6.
Neuroscience ; 537: 165-173, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38070592

RESUMO

Thioredoxin system plays an important role in maintaining the cellular redox balance. Recent evidence suggests that thioredoxin (Trx) system may promote cell survival and neuroprotection. In this study, we explored the role of thioredoxin system in neuronal differentiation using a primary mouse cortical neuronal cell culture. First, Trx and Trx reductase (TrxR) protein levels were analyzed in cultured neurons from 1 to 32 days in vitro (DIV). The result showed that Trx and TrxR protein levels time-dependently increased in the neuron cell culture from 1 to 18 DIV. To establish the role of Trx in neuronal differentiation, Trx gene expression was knockdown in cultured neurons using Trx sgRNA CRISPR/Cas9 technology. Treatment with CRISPR/Cas9/Trx sgRNA decreased Trx protein levels and caused a reduction in dendritic outgrowth and branching of cultured neurons. Then, primary cortical neurons were treated with the Trx inhibitor PX12 to block Trx reducing activity. Treatment with PX12 also reduced dendritic outgrowth and branching. Furthermore, PX12 treatment reduced the ratio of phosphorylated cyclic AMP response element-binding protein (CREB)/total CREB protein levels. To investigate whether CREB phosphorylation is redox regulated, SH-SY5Y cells were treated with H2O2, which reduced phosphorylated CREB protein levels and increased CREB thiol oxidation. However, treatment with CB3, a Trx-mimetic tripeptide, rescued H2O2-decreased CREB phosphorylation. Our results suggest that Trx regulates neuronal differentiation and maturation of primary mouse cortical neurons by targeting CREB neurotrophic pathway. Trx may regulate CREB activation by maintaining the cellular redox balance.


Assuntos
Neuroblastoma , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Humanos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Peróxido de Hidrogênio/metabolismo , Neuroblastoma/metabolismo , Tiorredoxinas/metabolismo , Neurônios/metabolismo , Oxirredução , Crescimento Neuronal
7.
Nat Prod Bioprospect ; 13(1): 41, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848577

RESUMO

Microbes well-adapted to the Arctic Ocean are promising for producing novel compounds, due to their fancy strategies for adaptation and being under-investigated. Two new phenazine alkaloids (1 and 2) and one new phenoxazine (3) were isolated from Nocardiopsis dassonvillei 502F, a strain originally isolated from Arctic deep-sea sediments. AntiSMASH analysis of the genome of Nocardiopsis dassonvillei 502F revealed the presence of 16 putative biosynthetic gene clusters (BGCs), including a phenazine BGC. Most of the isolated compounds were evaluated for their antibacterial, antiallergic, and cytotoxic activities. Among them, compounds 4 and 5 exhibited potent in vitro cytotoxic activities against osteosarcoma cell line 143B with IC50 values 0.16 and 20.0 µM, respectively. Besides, the results of antiallergic activities of compounds 6-8 exhibited inhibitory activities with IC50 values of 10.88 ± 3.05, 38.88 ± 3.29, and 2.44 ± 0.17 µg/mL, respectively (IC50 91.6 µM for the positive control loratadine).

8.
PeerJ ; 11: e15546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744240

RESUMO

Background: Pediatric medullary thyroid cancer (MTC) is one of the rare pediatric endocrine neoplasms. Derived from C cells of thyroid glands, MTC is more aggressive and more prompt to metastasis than other types of pediatric thyroid cancer. The mechanism remains unclear. Methods: We performed single-cell transcriptome sequencing on the samples of the primary tumor and metastases lymph nodes from one patient diagnosed with MTC, and it is the first single-cell transcriptome sequencing data of pediatric MTC. In addition, whole exome sequencing was performed and peripheral blood was regarded as a normal reference. All cells that passed quality control were merged and analyzed in R to discover the association between tumor cells and their microenvironment as well as tumor pathogenesis. Results: We first described the landscape of the single-cell atlas of MTC and studied the interaction between the tumor cell and its microenvironment. C cells, identified as tumor cells, and T cells, as the dominant participant in the tumor microenvironment, were particularly discussed in their development and interactions. In addition, the WES signature of tumor cells and their microenvironment were also described. Actively immune interactions were found, indicating B cells, T cells and myeloid cells were all actively participating in immune reaction in MTC. T cells, as the major components of the tumor microenvironment, proliferated in MTC and could be divided into clusters that expressed proliferation, immune effectiveness, and naive markers separately.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Humanos , Criança , Neoplasias da Glândula Tireoide/genética , Carcinoma Neuroendócrino/genética , Agressão , Microambiente Tumoral/genética
9.
J Hazard Mater ; 458: 131922, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379599

RESUMO

The enhancement of cadmium (Cd) extraction by plants from contaminated soils associated with phosphate-solubilizing bacteria (PSB) has been widely reported, but the underlying mechanism remains scarcely, especially in Cd-contaminated saline soils. In this study, a green fluorescent protein-labeled PSB, the strain E. coli-10527, was observed to be abundantly colonized in the rhizosphere soils and roots of halophyte Suaeda salsa after inoculation in saline soil pot tests. Cd extraction by plants was significantly promoted. The enhanced Cd phytoextraction by E. coli-10527 was not solely dependent on bacterial efficient colonization, but more significantly, relied on the remodeling of rhizosphere microbiota, as confirmed by soil sterilization test. Taxonomic distribution and co-occurrence network analyses suggested that E. coli-10527 strengthened the interactive effects of keystone taxa in the rhizosphere soils, and enriched the key functional bacteria that involved in plant growth promotion and soil Cd mobilization. Seven enriched rhizospheric taxa (Phyllobacterium, Bacillus, Streptomyces mirabilis, Pseudomonas mirabilis, Rhodospirillale, Clostridium, and Agrobacterium) were obtained from 213 isolated strains, and were verified to produce phytohormone and promote soil Cd mobilization. E. coli-10527 and those enriched taxa could assemble as a simplified synthetic community to strengthen Cd phytoextraction through their synergistic interactions. Therefore, the specific microbiota in rhizosphere soils enriched by the inoculated PSB were also the key to intensifying Cd phytoextraction.


Assuntos
Chenopodiaceae , Poluentes do Solo , Cádmio/metabolismo , Solo , Plantas Tolerantes a Sal/metabolismo , Escherichia coli/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Bactérias/metabolismo , Rizosfera , Fosfatos/análise
10.
Nat Prod Res ; 37(3): 389-396, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34498972

RESUMO

A new indole diketopiperazine alkaloid, named penilline D (1), together with five known indole alkaloid analogues (2-5, 11), two meroterpenoids (6 and 12), and four butenolide derivatives (7-10), were isolated from the Antarctic fungus Penicillium sp. SCSIO 05705. Extensive spectroscopic analysis and electronic circular dichroism (ECD) calculation were used to elucidate the structure of penilline D (1), including its absolute configuration. All isolated compounds (1-12) were evaluated for their cytotoxic, antibacterial and enzyme inhibitory activities against acetylcholinesterase (AChE) and pancreatic lipase (PL). Among them, compound 5 exhibited moderate in vitro cytotoxic activity against the 143B cell line with IC50 value of 12.64 ± 0.78 µM. Compound 6 showed strong inhibitory activity against AChE with IC50 value of 0.36 nM (IC50 18.7 nM for Tacrine), while compounds 6 and 11 showed weak PL enzyme inhibitory activity. Furthermore, an in silico molecular docking study was also performed between 6 and AChE.


Assuntos
Antineoplásicos , Penicillium , Policetídeos , Acetilcolinesterase , Dicroísmo Circular , Dicetopiperazinas , Alcaloides Indólicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Penicillium/química , Policetídeos/química
11.
Nat Prod Res ; 37(3): 441-448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34542359

RESUMO

A new glyoxylate-containing benzene derivative, methyl 2-(4-hydroxy-3-(3'-methyl-2'-butenyl)phenyl)-2-oxoacetate (1), together with ten known compounds (2-11), were isolated from the marine algicolous fungus, Aspergillus sp. SCSIO 41304. Their planar structures and absolute configurations were elucidated by detailed NMR, MS spectroscopic analysis and comparing with literature data. Compound 1 was isolated as a new fungal secondary metabolite, possessing a methyl glyoxylate moiety R-CO-CO-OCH3, which is rare in natural sources. All the isolated compounds (1-11) were tested for their antibacterial and enzyme inhibitory activities against acetylcholinesterase (AChE) and pancreatic lipase (PL). Among these compounds, aspulvinone H (4) showed moderate inhibition against AChE and PL with IC50 values of 25.95 and 47.06 µM, respectively. Further molecular docking simulation exhibited that compound 4 could well bind to the catalytic pockets of the AChE and PL.


Assuntos
Acetilcolinesterase , Aspergillus , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Aspergillus/química , Glioxilatos/metabolismo
12.
World J Clin Cases ; 10(30): 10882-10895, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36338221

RESUMO

BACKGROUND: The presence of liver metastasis (LM) is an independent prognostic factor for shorter survival in non-small cell lung cancer (NSCLC) patients. The median overall survival of patients with involvement of the liver is less than 5 mo. At present, identifying prognostic factors and constructing survival prediction nomogram for NSCLC patients with LM (NSCLC-LM) are highly desirable. AIM: To build a forecasting model to predict the survival time of NSCLC-LM patients. METHODS: Data on NSCLC-LM patients were collected from the Surveillance, Epidemiology, and End Results database between 2010 and 2018. Joinpoint analysis was used to estimate the incidence trend of NSCLC-LM. Kaplan-Meier curves were constructed to assess survival time. Cox regression was applied to select the independent prognostic predictors of cancer-specific survival (CSS). A nomogram was established and its prognostic performance was evaluated. RESULTS: The age-adjusted incidence of NSCLC-LM increased from 22.7 per 1000000 in 2010 to 25.2 in 2013, and then declined to 22.1 in 2018. According to the multivariable Cox regression analysis of the training set, age, marital status, sex, race, histological type, T stage, metastatic pattern, and whether the patient received chemotherapy or not were identified as independent prognostic factors for CSS (P < 0.05) and were further used to construct a nomogram. The C-indices of the training and validation sets were 0.726 and 0.722, respectively. The results of decision curve analyses (DCAs) and calibration curves showed that the nomogram was well-discriminated and had great clinical utility. CONCLUSION: We designed a nomogram model and further constructed a novel risk classification system based on easily accessible clinical factors which demonstrated excellent performance to predict the individual CSS of NSCLC-LM patients.

13.
Neoplasma ; 69(5): 1101-1107, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35951457

RESUMO

Cholangiocarcinoma (CCA) is a disease that includes a variety of epithelial neoplasms characterized by the differentiation of cholangiocytes. M2 polarization is imperative to the development of CCA cells. In this study, we investigated the influence of secreted protein acidic and rich in cysteine (SPARC) on M2 polarization and CCA cell growth. We found that the SPARC level was amplified in M2-polarized macrophages and TAMs. In addition, the downregulation of SPARC prevented the M2 polarization of macrophages. Silencing SPARC inhibited the M2 macrophage-mediated effects on the proliferation, migration, and angiogenesis of CCA cells. Additionally, SPARC knockdown blocked the M2 polarization of macrophages by inhibiting the PI3K/AKT signaling. Moreover, an activator of PI3K signaling repressed the effect of SPARC knockdown on the M2 macrophage-induced elevation of proliferation, migration, and angiogenesis in CCA cells. In conclusion, SPARC contributes to the M2 polarization of macrophages to promote proliferation, migration, and angiogenesis of CCA cells, which provides new insight into the treatment of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Osteonectina , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/patologia , Cisteína/metabolismo , Humanos , Macrófagos , Neovascularização Patológica/patologia , Osteonectina/genética , Osteonectina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Genes Environ ; 44(1): 17, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606799

RESUMO

BACKGROUND: The principal objective of this project was to investigate the Epidermal Growth Factor Receptor (EGFR) gene mutation characteristics of lung cancer patients, which can provide a molecular basis for explaining the clinicopathological features, epidemiology and use of targeted therapy in lung cancer patients in the coal-producing areas of East Yunnan. METHODOLOGY: We collected 864 pathologically confirmed lung cancer patients' specimens in First People's Hospital of Qujing City of Yunnan Province from September 2016 to September 2021. We thereafter employed Next Generation Sequencing (NGS) technology to detect all exons present in the EGFR gene. RESULTS: The overall mutation frequency of the EGFR gene was 47.22%. The frequency of EGFR gene mutations in the tissue, plasma, and cytology samples were found to be 53.40%, 23.33%, and 62.50%, respectively. Univariate analysis indicated that the coal-producing areas and Fuyuan county origin were significantly associated with relatively low EGFR gene mutation frequency. Female, non-smoking history, adenocarcinoma, non-brain metastasis, and tissue specimens were found to be related to high EGFR gene mutation frequency. Multivariate logistic regression analysis suggested the lung cancer patients in the central area of Qujing City, stage Ia, non-coal-producing areas, non-Fuyuan origin, and non-Xuanwei origin were more likely to develop EGFR gene mutations. The most common mutations were L858R point mutation (33.09%) and exon 19 deletion (19-del) (21.32%). Interestingly, the mutation frequency of G719X (p = 0.001) and G719X + S768I (p = 0.000) in the coal-producing areas were noted to be more significant than those in non-coal-producing regions. CONCLUSION: This findings of this study might be important in establishing the correlation between routine using NGS for EGFR gene mutation diagnosis and clinical practice in the lung cancer patients.

15.
Neoplasma ; 69(3): 620-629, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35263996

RESUMO

Cholangiocarcinoma (CCA) is the second most common primary liver malignancy, however, it is difficult to diagnose and treat, and only a few patients with CCA are suitable for surgery. Iodine-125 (I-125) is an effective treatment for cancer, but the molecular mechanisms underlying the effects of I-125 differ among different cancers. This study aimed to explore the effects of I-125 on CCA cell activity and determine the possible mechanisms of action of I-125 in this type of cancer. CCA cell proliferation, cycling, apoptosis, autophagy, and endoplasmic reticulum (ER) stress were determined after irradiation of CCA cells with I-125 seeds. The effects of I-125 on autophagy and ER stress in three CCA cell lines were evaluated using western blotting, while the effects of I-125 on apoptosis and autophagy in QBC939 cells treated with si-Beclin1 or si-PERK, respectively, were assessed using flow cytometry. I-125 suppressed cell viability and induced cell cycle G2/M-phase arrest in three CCA cell lines (QBC939, TFK-1, HuCCT1). I-125 induced apoptosis, autophagy, and ER stress by altering the expression levels of some related proteins in each of the three CCA cell lines. Furthermore, autophagy inhibition (treatment with si-Beclin1) increased expression of apoptosis-related proteins (cleaved-PARP and cleaved-caspase-3, Bax/Bcl2) in QBC939 cells irradiated with I-125 seeds, while ER stress inhibition (with si-PERK) suppressed the expression of autophagy-related proteins (LC3-I, LC3-II, p62). Therefore, I-125 induces ER stress, thereby activating protective autophagy in CCA cells through the PERK signaling pathway. Combined inhibition of ER stress and autophagy signaling may increase the killing effect of I-125 on cancer cells and serve as a new auxiliary method in I-125 radiotherapy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1/metabolismo , Neoplasias dos Ductos Biliares/radioterapia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/radioterapia , Estresse do Retículo Endoplasmático , Humanos , Radioisótopos do Iodo/farmacologia
16.
Mar Drugs ; 20(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35049926

RESUMO

Six new α-pyrone meroterpenoid chevalones H-M (1-6), together with six known compounds (7-12), were isolated from the gorgonian coral-derived fungus Aspergillus hiratsukae SCSIO 7S2001 collected from Mischief Reef in the South China Sea. Their structures, including absolute configurations, were elucidated on the basis of spectroscopic analysis and X-ray diffraction data. Compounds 1-5 and 7 showed different degrees of antibacterial activity with MIC values of 6.25-100 µg/mL. Compound 8 exhibited potent cytotoxicity against SF-268, MCF-7, and A549 cell lines with IC50 values of 12.75, 9.29, and 20.11 µM, respectively.


Assuntos
Antozoários , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Aspergillus , Pironas/farmacologia , Animais , Antibacterianos/química , Antineoplásicos/química , Organismos Aquáticos , Linhagem Celular Tumoral , China , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Pironas/química
17.
Orthop Surg ; 14(3): 595-604, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088942

RESUMO

OBJECTIVE: To investigate the effect of autophagy expression levels of different weight-bearing states and different stages of osteoarthritis in animal models, as well as the corresponding mechanisms. METHODS: We used the male Sprague-Dawley (SD) rats (12-week-old, SPF) to establish the OA animal models by modified Hulth method, and grouped animal models according to the length of time after surgery and different weight-bearing areas. RT-qPCR was carried out for detection of autophagy-related genes such as Atg7, Atg12, P62, etc. Western blot analysis was used to detect the expression levels of corresponding autophagy-related proteins such as LC3B, P62, etc. T test was performed for statistical analysis to compare different groups, while the differences were deemed statistically significant with P < 0.05. Transmission electron microscopy was used to observe the autophagosome to demonstrate the level of autophagy expression and the status of the chondrocytes. RESULTS: The results of the RT-qPCR testing showed that when the weight-bearing cartilage of the 4-week group (relatively mild) was compared with that of the 10-week group (relatively severe), there were statistically significant differences in all the genes tested, in detail: Atg3 (P < 0.01), Atg7 (P < 0.01), Atg12 (P < 0.01), P62 (P < 0.0001). The expression of autophagy-related mRNA in the 4-week group is increased compared with that of the 10-week group. As for the expression of proteins, Western blotting showed that in the comparison between the 4- and the 10-week groups, statistically significant results include Atg12 (P < 0.01) in the non-weight-bearing area, with decreased autophagy in the 10-week group compared with that of the 4-week group, while expression of LC3B (P < 0.05) protein was significantly higher in the 4-week group than in the control in the non-weight-bearing area. The expression of LC3B (P < 0.0001) and P62 (P < 0.05) in the 10-week group were higher than that of the control. Transmission electron microscope showed that autophagy in the weight-bearing area is stronger than that in the non-weight-bearing area, and autophagy in the 4-week group is stronger than in the 10-week group for the weight-bearing area. CONCLUSIONS: The expression of autophagy varies during different stages of osteoarthritis, in which the autophagy is stronger in the early stage of osteoarthritis, and gradually decreases with the progression of the disease. Autophagy in different weight-bearing areas may also be different.


Assuntos
Osteoartrite do Joelho , Animais , Autofagia , Condrócitos , Modelos Animais de Doenças , Humanos , Masculino , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Aging Cell ; 21(1): e13531, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905652

RESUMO

Experimental and clinical therapies in the field of Alzheimer's disease (AD) have focused on elimination of extracellular amyloid beta aggregates or prevention of cytoplasmic neuronal fibrillary tangles formation, yet these approaches have been generally ineffective. Interruption of nuclear lamina integrity, or laminopathy, is a newly identified concept in AD pathophysiology. Unraveling the molecular players in the induction of nuclear lamina damage may lead to identification of new therapies. Here, using 3xTg and APP/PS1 mouse models of AD, and in vitro model of amyloid beta42 (Aß42) toxicity in primary neuronal cultures and SH-SY5Y neuroblastoma cells, we have uncovered a key role for cathepsin L in the induction of nuclear lamina damage. The applicability of our findings to AD pathophysiology was validated in brain autopsy samples from patients. We report that upregulation of cathepsin L is an important process in the induction of nuclear lamina damage, shown by lamin B1 cleavage, and is associated with epigenetic modifications in AD pathophysiology. More importantly, pharmacological targeting and genetic knock out of cathepsin L mitigated Aß42 induced lamin B1 degradation and downstream structural and molecular changes. Affirming these findings, overexpression of cathepsin L alone was sufficient to induce lamin B1 cleavage. The proteolytic activity of cathepsin L on lamin B1 was confirmed using mass spectrometry. Our research identifies cathepsin L as a newly identified lamin B1 protease and mediator of laminopathy observed in AD. These results uncover a new aspect in the pathophysiology of AD that can be pharmacologically prevented, raising hope for potential therapeutic interventions.


Assuntos
Doença de Alzheimer/genética , Catepsina L/metabolismo , Lâmina Nuclear/metabolismo , Doença de Alzheimer/fisiopatologia , Humanos
19.
Chemosphere ; 287(Pt 2): 132209, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826911

RESUMO

Soil cadmium (Cd) mobilized with phosphate-solubilizing bacteria (PSB), especially for strains effectively colonized in rhizosphere, is an important pathway for promoting its accumulation by Cd-hyperaccumulators. In this study, screened PSB strains, Acinetobacter pittii (AP) and Escherichia coli (EC), were used to evaluate their effects on Cd mobilization in rhizosphere, Cd accumulation by Solanum nigrum L., and rhizobacterial community and metabolic function under different colonization condition. Results indicated that AP or EC inoculated in soils significantly promoted plant growth, and simultaneously motivated Cd accumulation in S. nigrum L. by 119% and 88%, respectively, when compared with that of uninoculated treatment. Higher efficiency colonization of AP contributed to more organic acids (malic, l-proline, l-alanine, and γ-aminobutanoic) production in the rhizosphere soil and Cd accumulation by S. nigrum L., when compared with that of EC treatment. Taxonomic distribution and co-occurrence network analyses demonstrated that inoculation of AP or EC enriched dominant microbial taxa with plant growth promotion function and keystone taxa related to Cd mobilization in the rhizosphere soil, respectively. Inoculated strains up-regulated the expression of genes related to bacterial mobility, amino acid metabolism, and carbon metabolism among rhizobacterial community. Overall, this study provided a feasible method for soil Cd phytoremediation by promoting Cd mobilization with the enhancement of keystone taxa and organic acid secretion based on the high-efficiency colonization of PSB.


Assuntos
Poluentes do Solo , Solanum nigrum , Acinetobacter , Bactérias , Biodegradação Ambiental , Cádmio/análise , Fosfatos , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
20.
Mar Drugs ; 19(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34677441

RESUMO

To enlarge the chemical diversity of Eurotium sp. SCSIO F452, a talented marine-derived fungus, we further investigated its chemical constituents from a large-scale fermentation with modified culture. Four pairs of new salicylaldehyde derivative enantiomers, euroticins F-I (1-4), as well as a known one eurotirumin (5) were isolated and characterized. Compound 1 features an unprecedented constructed 6/6/6/5 tetracyclic structures, while 2 and 3 represent two new types of 6/6/5 scaffolds. Their structures were established by comprehensive spectroscopic analyses, X-ray diffraction, 13C NMR, and electronic circular dichroism calculations. Selected compounds showed significant inhibitory activity against α-glucosidase and moderate cytotoxic activities against SF-268, MCF-7, HepG2, and A549 cell lines.


Assuntos
Aldeídos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Eurotium , Aldeídos/química , Animais , Antineoplásicos/química , Antioxidantes/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA