Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(3): 101304, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39193315

RESUMO

The viral genome titer is a crucial indicator for the clinical dosing, manufacturing, and analytical testing of recombinant adeno-associated virus (rAAV) gene therapy products. Although quantitative PCR and digital PCR are the common methods used for quantifying the rAAV genome titer, they are limited by inadequate accuracy and robustness. The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a biosensor is being increasingly used in virus detection; however, there is currently no report on its application in the titer determination of gene therapy products. In the present study, an amplification-free CRISPR-Cas12a assay was developed, optimized, and applied for rAAV genome titer determination. The assay demonstrated high precision and accuracy within the detection range of 4 × 109 and 1011 vg/mL. No significant difference was observed between the Cas12a and qPCR assay results (p < 0.05, t test). Moreover, Cas12a exhibited similar activity on both single-stranded and double-stranded DNA substrates. Based on this characteristic, the titers of positive-sense and negative-sense strands were determined separately, which revealed a significant difference between their titers for an in-house reference AAV5-IN. This study presents the inaugural report of a Cas12a assay developed for the titer determination and composition analysis of the rAAV genome.

2.
J Pharm Biomed Anal ; 248: 116331, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38968868

RESUMO

Antibody-drug conjugates (ADCs) represent the forefront of the next generation of biopharmaceuticals. An ADC typically comprises an antibody covalently linked to a cytotoxic drug via a linker, resulting in a highly heterogeneous product. This study focuses on the analysis of a custom-made cysteine-linked ADC. Initially, we developed a LC-MS-based characterization workflow using brentuximab vedotin (Adcetris®), encompassing native intact MS, analysis of reduced chains and subunits under denaturing condition, peptide mapping and online strong cation exchange chromatography coupled with UV and mass spectrometry detection (SCX-UV-MS) applied for brentuximab vedotin first time reported. Subsequently, we applied this in-depth characterization workflow to a custom-made cysteine-linked ADC. The measured drug-to-antibody ratio(DAR) of this ADC is 6.9, further analysis shown that there is a small amount of unexpected over-conjugation. Over-conjugation sites were successfully identified using multiple UHPLC-MS based characterization techniques. Also, one competitively cysteine-conjugated impurity was observed in native intact MS results, by combing native intact MS, reduced chains, subunit analysis and peptide mapping results, the impurity conjugation sites were also identified. Since this molecule is at early development stage, this provides important information for conjugation process improvement and link-drug material purification. SCX-UV-MS approach can separate the custom-made cysteine-linked ADC carrying different payloads and reduce the complexity of the spectra. The integrated approach underscores the significance of combining the SCX-UV-MS online coupling technique with other characterization methods to elucidate the heterogeneity of cysteine-linked ADCs.


Assuntos
Brentuximab Vedotin , Cisteína , Imunoconjugados , Brentuximab Vedotin/química , Brentuximab Vedotin/análise , Cisteína/química , Cisteína/análise , Imunoconjugados/química , Imunoconjugados/análise , Espectrometria de Massa com Cromatografia Líquida , Mapeamento de Peptídeos/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38823148

RESUMO

The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.


Assuntos
Cromatografia em Gel , Cisteína , Imunoconjugados , Espectrometria de Massas , Imunoconjugados/química , Imunoconjugados/análise , Cisteína/química , Reprodutibilidade dos Testes , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Modelos Lineares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Limite de Detecção , Humanos , Fluxo de Trabalho
4.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812159

RESUMO

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Ciclo-Oxigenase 2 , Fígado , NF-kappa B , Panax , Saponinas , Transdução de Sinais , Animais , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Camundongos , Panax/química , Masculino , Saponinas/farmacologia , Saponinas/administração & dosagem , NF-kappa B/genética , NF-kappa B/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia
5.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791184

RESUMO

Recombinant adeno-associated virus (rAAV) has emerged as a prominent vector for in vivo gene therapy, owing to its distinct advantages. Accurate determination of the rAAV genome titer is crucial for ensuring the safe and effective administration of clinical doses. The evolution of the rAAV genome titer assay from quantitative PCR (qPCR) to digital PCR (dPCR) has enhanced accuracy and precision, yet practical challenges persist. This study systematically investigated the impact of various operational factors on genome titration in a single-factor manner, aiming to address potential sources of variability in the quantitative determination process. Our findings revealed that a pretreatment procedure without genome extraction exhibits superior precision compared with titration with genome extraction. Additionally, notable variations in titration results across different brands of dPCR instruments were documented, with relative standard deviation (RSD) reaching 23.47% for AAV5 and 11.57% for AAV8. Notably, optimal operations about DNase I digestion were identified; we thought treatment time exceeding 30 min was necessary, and there was no need for thermal inactivation after digestion. And we highlighted that thermal capsid disruption before serial dilution substantially affected AAV genome titers, causing a greater than ten-fold decrease. Conversely, this study found that additive components of dilution buffer are not significant contributors to titration variations. Furthermore, we found that repeated freeze-thaw cycles significantly compromised AAV genome titers. In conclusion, a comprehensive dPCR titration protocol, incorporating insights from these impact factors, was proposed and successfully tested across multiple serotypes of AAV. The results demonstrate acceptable variations, with the RSD consistently below 5.00% for all tested AAV samples. This study provides valuable insights to reduce variability and improve the reproducibility of AAV genome titration using dPCR.


Assuntos
Dependovirus , Vetores Genéticos , Genoma Viral , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Reação em Cadeia da Polimerase/métodos , Células HEK293 , Terapia Genética/métodos , Carga Viral
6.
MedComm (2020) ; 5(4): e506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525110

RESUMO

Recombinant proteins are gaining increasing popularity for treating human diseases. The clinical effectiveness of recombinant proteins is directly related to their biological activity, which is an important indicator in drug development and quality control. However, certain recombinant proteins have unclear or complex signal pathways, making detecting their activity in vitro difficult. For instance, recombinant human endostatin (endostatin), a new antitumor drug developed in China, lacks a sensitive and stable assay for its biological activity since being market approval. To address this issue, we performed a genome-wide screening of immortalized human umbilical vein endothelial cells (HUVECs) using a CRISPR/Cas9 knockout library containing 20,000 targeted genes. We identified two potential endostatin-resistant genes, NEPSPP and UTS2, and successfully constructed a highly sensitive cell line, HUVEC-UTS2-3#, by knocking down the UTS2 gene. Based on the optimized parameters of HUVEC-UTS2-3# cells, we established a new method for detecting the biological activity of endostatin. The method was validated, and it produced results consistent with primary HUVEC cells but with higher sensitivity and more stable data. The use of gene-editing technology provides a novel solution for detecting the biological activity of recombinant proteins that other methods cannot detect.

7.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403351

RESUMO

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Proteína de Ligação a GTP rhoC/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Sorafenibe , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Movimento Celular , Proliferação de Células
8.
J Phys Chem A ; 127(28): 5772-5778, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37418276

RESUMO

The rotational spectrum of acetoin (3-hydroxy-2-butanone) was measured by using Fourier transform microwave spectroscopy with the aid of quantum chemical calculations. Only one conformer of acetoin was detected in the pulsed jet, whose spectrum featured the splittings raised from the internal rotation of the methyl top linking to the C═O group. Based on the spectroscopic result, radio-astronomical searches for acetoin were carried out toward the massive star-forming region Sgr B2(N) using the Shanghai Tianma 65 m and IRAM 30 m radio telescopes. No lines belonging to acetoin were detected toward Sgr B2(N). Its upper limit of column density was calculated.

9.
Front Immunol ; 13: 949248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059554

RESUMO

To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.


Assuntos
Adenovirus dos Símios , COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunização , Macaca , Camundongos , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados
10.
Microbiol Spectr ; 10(5): e0226322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069561

RESUMO

We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Interleucina-17 , Eliminação de Partículas Virais , Virulência , Vacinas contra COVID-19 , Fator de Necrose Tumoral alfa , Macaca mulatta , Interferon gama , Modelos Animais de Doenças
11.
Clin Cosmet Investig Dermatol ; 15: 1675-1680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003527

RESUMO

Verruciform xanthoma (VX) is a rare, benign, mucocutaneous, verrucous, papillary lesion. This paper retrospectively summarizes clinical and pathologic features of 32 vulvar verruciform xanthoma reported from China and abroad. The skin lesions are generally single, mainly in labia minora, clitoris and fourchette with partly extending to the groin, buttocks and anus. The possible inducing factors include long-term scratching, local itching, severe lymphedema or lymphangioma circumscriptum. Severe cutaneous trauma and chronic inflammation may be the main causes. Clinically, it can easily be misdiagnosed as condylomata acuminata, squamous cell carcinoma, bowenoid papulosis, etc. It is reported to be related to underlying disorders. The main treatment is complete resection.

12.
Acta Pharm Sin B ; 12(7): 2969-2989, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35345451

RESUMO

Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.

13.
Methods Cell Biol ; 167: 15-37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152993

RESUMO

Along with the rising of the development of CAR-T therapy, the biodistribution and in vivo proliferation of CAR-T cells which are the basis of their effectiveness and safety, have aroused much attention. For IND application, the biodistribution characteristics of CAR-T cells are required to be determined using at least two methods (both quantitative and qualitative evaluation could be applicable) for a comprehensively understanding of their potential target organs/tissues. This chapter takes the CD19 targeted CAR-T cell as an example, to introduce the most commonly used experimental procedure and technical points of using tumor-bearing NSG mice to perform biodistribution research based on in vivo optical imaging, flow cytometry, histopathology/immunochemistry and real-time quantitative PCR. Although these protocols are not fully standardized and could be further optimized, the data obtained from these approaches has been accepted by U.S. Food and Drug Administration and China Food and Drug Administration.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Distribuição Tecidual
14.
Environ Sci Pollut Res Int ; 29(27): 40585-40598, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35084675

RESUMO

Excessive N-NO3- water pollution has become a widespread and serious problem that threatens human and ecosystem health. Here, a TiO2/SiO2 composite photocatalyst was prepared via the sol-gel/hydrothermal method. TiO2 and TiO2/SiO2 were characterized by X-ray diffraction (XRD), UV-Vis differential reflectance spectroscopy (DRS), Fourier infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Afterward, the photocatalytic performance of TiO2 and TiO2/SiO2 to reduce low nitrate concentrations (30 mgN L-1) under UV light was evaluated and the effects of different factors on this process were investigated, after which the reaction conditions were optimized. Removal rates of up to 99.93% were achieved at a hole scavenger (formic acid) concentration of 0.6 mL L-1, a CO2 flow rate of 0.1 m3 h-1, and a TiO2 concentration of 0.9 g L-1. In contrast, TiO2/SiO2 at a 1.4 g L-1 concentration and a TiO2 load rate of 40% achieved a removal rate of 83.48%, but with more than 98% of nitrogen generation rate. NO2- and NH4+ were the minor products, whereas N2 was the main product.


Assuntos
Dióxido de Silício , Água , Catálise , Ecossistema , Humanos , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
15.
Int Immunopharmacol ; 101(Pt A): 108277, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34773758

RESUMO

CTLA-4 is an important immune checkpoint for the regulation of T cell activation, and anti-CTLA-4 monoclonal antibodies (mAbs) are being developed as mono- or combination therapy for various tumors with reliable clinical efficacy. Ipilimumab is the first approved inhibitor of immune checkpoint, and many other anti-CTLA-4 mAbs, including ipilimumab biosimilars, are in different stages of clinical trials. However, due to the immunomodulating nature of the mAbs targeting CTLA-4, mode of action (MoA) and cell-based bioassay to determine their bioactivities as the lot release or stability test has been a great challenge to quality control laboratories. In this study, we have developed and validated a reporter gene assay (RGA), in which two kinds of cell lines were engineered to measure the bioactivity of anti-CTLA-4 mAbs. Raji cells were stably transfected with the membrane-anchored anti-CD3 single chain antibody fragment (scFv) as antigen-presenting cells (APCs, Raji-CD3scFv cells), while Jurkat cells were stably transfected with CTLA-4 with Y201V mutation and NFAT controlled luciferase as the effector cells (Jurkat-CTLA-4-NFAT-luc cells). The ligation of CD80/CD86 on the APCs with CTLA-4 could reduce the luciferase expression accompanied with the activation of effector cells, while the anti-CTLA-4 mAb could reverse the reduction, which resulted in good dose response curve to determine its bioactivity. After optimizing various assay conditions, we performed full validation according to ICH-Q2 (R1), which demonstrated the excellent specificity, accuracy, precision, linearity, and the cell passage stability. The satisfied performance characteristics render the RGA a good bioassay in the bioactivity determination of anti-CTLA-4 mAbs, as applied in characterization, batch release control, stability study, and biosimilar assessment.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Bioensaio/métodos , Antígeno CTLA-4/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genes Reporter , Humanos , Células Jurkat , Luciferases de Vaga-Lume/genética , Mutação , Neoplasias/imunologia
16.
Int Immunopharmacol ; 100: 108112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34521023

RESUMO

More than 100 monoclonal antibodies (mAbs) have been approved by FDA. The mechanism of action (MoA) involves in neutralization of a specific target via the Fab region and Fc effector functions through Fc region, while the latter include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). ADCP has been recognized one of the most important MoAs, especially for anti-cancer mAbs in recent years. However, traditional bioassays measuring ADCP always introduced primary macrophages and flow cytometry, which are difficult to handle and highly variable. In this study, we engineered a monoclonal Jurkat/NFAT/CD32a-FcεRIγ effector cell line that stably expresses CD32a-FcεRIγ chimeric receptor and NFAT-controlled luciferase. The corresponding mAb could bind with the membrane antigens on the target cells with its Fab fragment and CD32a-FcεRIγ on the effector cells with its Fc fragment, leading to the crosslinking of CD32a-FcεRIγ and the resultant expression of subsequent NFAT-controlled luciferase, which represents the bioactivity of ADCP based on the MoA of the mAb. With rituximab as the model mAb, Raji cells as the target cells, and Jurkat/NFAT/CD32a-FcεRIγ cells as the effector cells, we adopted the strategy of Design of Experiment (DoE) to optimize the bioassay. Then we fully validated the established bioassay according to ICH-Q2(R1), which proved the good assay performance characteristics of the bioassay, including specificity, accuracy, precision, linearity, stability and robustness. This RGA can be applied to evaluate the -ADCP bioactivity for anti-CD20 mAbs in lot release, stability testing as well as biosimilar comparability. The engineered cells may also potentially be used to evaluate the ADCP bioactivity of mAbs with other targets.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Bioensaio , Genes Reporter , Linfoma de Células B/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Rituximab/farmacologia , Antineoplásicos Imunológicos/metabolismo , Humanos , Células Jurkat , Luciferases/genética , Luciferases/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Reprodutibilidade dos Testes , Rituximab/metabolismo
17.
Emerg Microbes Infect ; 10(1): 1598-1608, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34278956

RESUMO

Since the outbreak of COVID-19, a variety of vaccine platforms have been developed. Amongst these, inactivated vaccines have been authorized for emergency use or conditional marketing in many countries. To further enhance the protective immune responses in populations that have completed vaccination regimen, we investigated the immunogenic characteristics of different vaccine platforms and tried homologous or heterologous boost strategy post two doses of inactivated vaccines in a mouse model. Our results showed that the humoral and cellular immune responses induced by different vaccines when administered individually differ significantly. In particular, inactivated vaccines showed relatively lower level of neutralizing antibody and T cell responses, but a higher IgG2a/IgG1 ratio compared with other vaccines. Boosting with either recombinant subunit, adenovirus vectored or mRNA vaccine after two-doses of inactivated vaccine further improved both neutralizing antibody and Spike-specific Th1-type T cell responses compared to boosting with a third dose of inactivated vaccine. Our results provide new ideas for prophylactic inoculation strategy of SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunização Secundária , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Citocinas , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas de Produtos Inativados/administração & dosagem
18.
Emerg Microbes Infect ; 10(1): 629-637, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33691606

RESUMO

COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. Our results showed that sequential immunization with adenovirus vectored vaccine followed by inactivated/recombinant subunit/mRNA vaccine administration specifically increased levels of neutralizing antibodies and promoted the modulation of antibody responses to predominantly neutralizing antibodies. Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.


Assuntos
Vacinas contra Adenovirus/imunologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Imunização Secundária/métodos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia , Vacinas contra Adenovirus/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Interferon gama/sangue , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação/efeitos adversos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA
19.
Int Immunopharmacol ; 93: 107418, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33540248

RESUMO

The tumor necrosis factor alpha (TNF-α)/nuclear factor-kappa B (NF-κB) signaling pathway plays a crucial role in the pathogenesis of inflammatory diseases. Several therapeutic monoclonal antibodies (mAbs) and biosimilars against TNF-α have been developed to treat patients who suffer from inflammatory diseases caused by disordered expression of TNF-α. Hence, quality control of biopharmaceuticals is crucial during research and development. The high-order structure of these complex molecules cannot be entirely identified by physiochemical attributes; however, they can be inferred by observing biological activities. Thus, we developed a U937-based bioassay to determine the biological activities of mAbs and biosimilars against TNF-α using a low-basal NF-κB-inducible lentiviral reporter gene. The reporter gene assay (RGA) can be induced with a high signal-to-noise ratio (SNR) in a short time by TNF-α. Validation of the RGA showed accuracy (% relative standard deviation [RSD] = 4.64%), linearity (r2 = 0.9856), and precision (Interday RSD = 4.6%, between analysts RSD = 3.51%) as well as reasonable specificity and robustness. The measured potency values of a biosimilar to adalimumab were between 90% and 110%. Results showed our RGA is suitable for mAb quality control and lot release, and for evaluation of the biological activity similarity of the biosimilar.


Assuntos
Anticorpos Monoclonais/farmacologia , Bioensaio/métodos , Medicamentos Biossimilares/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Medicamentos Biossimilares/metabolismo , Genes Reporter/genética , Humanos , Lentivirus/genética , Camundongos , NF-kappa B/metabolismo , Controle de Qualidade , Fator de Necrose Tumoral alfa/imunologia , Células U937
20.
Acta Pharm Sin B ; 11(12): 3925-3934, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024316

RESUMO

T cell immunoglobulin and ITIM domain (TIGIT) is a novel immune checkpoint that has been considered as a target in cancer immunotherapy. Current available bioassays for measuring the biological activity of therapeutic antibodies targeting TIGIT are restricted to mechanistic investigations because donor primary T cells are highly variable. Here, we designed a reporter gene assay comprising two cell lines, namely, CHO-CD112-CD3 scFv, which stably expresses CD112 (PVRL2, nectin-2) and a membrane-bound anti-CD3 single-chain fragment variable (scFv) as the target cell, and Jurkat-NFAT-TIGIT, which stably expresses TIGIT as well as the nuclear factor of activated T-cells (NFAT) response element-controlled luciferase gene, as the effector cell. The anti-CD3 scFv situated on the target cells activates Jurkat-NFAT-TIGIT cells through binding and crosslinking CD3 molecules of the effector cell, whereas interactions between CD112 and TIGIT prevent activation. The presence of anti-TIGIT mAbs disrupts their interaction, which in turn reverses the inactivation and luciferase expression. Optimization and validation studies have demonstrated that this assay is superior in terms of specificity, accuracy, linearity, and precision. In summary, this reliable and effective reporter gene assay may potentially be utilized in lot release control, stability assays, screening, and development of novel TIGIT-targeted therapeutic antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA