Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Assuntos
Cádmio , Mitocôndrias , Piroptose , Testículo , Animais , Cádmio/toxicidade , Masculino , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Piroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteostase , Proteínas Mitocondriais/metabolismo , Exposição Ambiental/efeitos adversos , DNA Mitocondrial , Proteases Dependentes de ATP/metabolismo , Estresse Proteotóxico
2.
J Hazard Mater ; 470: 134142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555669

RESUMO

Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.


Assuntos
Cádmio , Poluentes Ambientais , Células Intersticiais do Testículo , Testículo , Testosterona , Ubiquitina-Proteína Ligases , Masculino , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Cádmio/toxicidade , Testosterona/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Poluentes Ambientais/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética
3.
J Hazard Mater ; 469: 133997, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508115

RESUMO

Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.


Assuntos
Fibronectinas , Osteoporose , Humanos , Camundongos , Feminino , Animais , Gravidez , Prednisona/metabolismo , Fibronectinas/metabolismo , Exposição Materna , Mitofagia , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Osteoporose/induzido quimicamente
4.
Nat Commun ; 15(1): 1353, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355624

RESUMO

There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.


Assuntos
Infertilidade Masculina , Análise do Sêmen , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Pai , Infertilidade Masculina/genética , Metiltransferases , Obesidade/metabolismo , Sêmen/metabolismo , Tretinoína
5.
Theranostics ; 14(1): 436-450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164156

RESUMO

Rationale: Vitamin D (VD) has been suggested to have antitumor effects, however, research on the role of its transporter vitamin D-binding protein (VDBP, gene name as GC) in tumors is limited. In this study, we demonstrated the mechanism underlying the inhibition of vasculogenic mimicry (VM) by VDBP in hepatocellular carcinoma (HCC) and proposed an anti-tumor strategy of combining anti-PD-1 therapy with VD. Methods: Three-dimensional cell culture models and mice with hepatocyte-specific GC deletion were utilized to study the correlation between VDBP expression and VM. A patient-derived tumor xenograft (PDX) model was further applied to validate the therapeutic efficacy of VD in combination with an anti-PD-1 drug. Results: The study revealed that VDBP expression is negatively correlated with VM in HCC patients and elevated VDBP expression is associated with a favorable prognosis. The mechanism studies suggested VDBP hindered the binding of Twist1 on the promoter of VE-cadherin by interacting with its helix-loop-helix DNA binding domain, ultimately leading to the inhibition of VM. Furthermore, VD facilitated the translocation of the vitamin D receptor (VDR) into the nucleus where VDR interacts with Yin Yang 1 (YY1), leading to the transcriptional activation of VDBP. We further demonstrated that the combination of VD and anti-PD-1 led to an improvement in the anti-tumor efficacy of an anti-PD-1 drug. Conclusion: Collectively, we identified VDBP as an important prognostic biomarker in HCC patients and uncovered it as a therapeutic target for enhancing the efficacy of immune therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Proteína de Ligação a Vitamina D/uso terapêutico , Neoplasias Hepáticas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral
6.
Nutrients ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764723

RESUMO

The supplementation of multiple micronutrients throughout pregnancy can reduce the risk of adverse birth outcomes and various diseases in children. However, the long-term effect of maternal multiple micronutrient levels in the second trimester on the overall development of preschoolers remains unknown. Therefore, 1017 singleton mother-infant pairs and 6-year-old preschoolers were recruited based on the China-Wuxi Birth Cohort Study. Meanwhile, information on the demographic characteristics of pregnant women and preschoolers, maternal copper, calcium, iron, magnesium, and zinc levels in whole blood during the second trimester, and neonatal outcomes, were collected. We aimed to investigate the long-term impact of maternal copper, calcium, iron, magnesium, and zinc levels in the second trimester on mild thinness among 6-year-old preschoolers, and the modifying effect of small for gestational age (SGA), within the Chinese population. Multiple logistic regression models revealed that high-level maternal iron in the second trimester reduced the risk of mild thinness [adjusted OR: 0.46 (95% CI: 0.26, 0.80)] among 6-year-old preschoolers. However, no significant association was found for the remaining four maternal essential metal elements. Additionally, the restricted cubic spline function showed that the risk of mild thinness decreased when maternal iron concentration exceeded 7.47 mmol/L in whole blood during the second trimester. Furthermore, subgroup analysis indicated that the long-term protective effect of high-level maternal iron on mild thinness was only observed in SGA infants. Summarily, high-level maternal iron in the second trimester distinctly lowers the risk of mild thinness among 6-year-old preschoolers, especially in preschoolers with birth outcomes of SGA. Our findings offer evidence for the implementation of iron supplementation in the second trimester as a preventive measure against mild thinness in children.

7.
Sci Rep ; 9(1): 7317, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086231

RESUMO

Ca2+-transcription coupling controls gene expression patterns that define vascular smooth muscle cell (VSMC) phenotype. Although not well understood this allows normally contractile VSMCs to become proliferative following vessel injury, a process essential for repair but which also contributes to vascular remodelling, atherogenesis and restenosis. Here we show that the Ca2+/HCO3--sensitive enzyme, soluble adenylyl cyclase (sAC), links Ca2+ influx in human coronary artery smooth muscle cells (hCASMCs) to 3',5'-cyclic adenosine monophosphate (cAMP) generation and phosphorylation of the transcription factor Ca2+/cAMP response element binding protein (CREB). Store-operated Ca2+ entry (SOCE) into hCASMCs expressing the FRET-based cAMP biosensor H187 induced a rise in cAMP that mirrored cytosolic [Ca2+]. SOCE also activated the cAMP effector, protein kinase A (PKA), as determined by the PKA reporter, AKAR4-NES, and induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and CREB. Transmembrane adenylyl cyclase inhibition had no effect on the SOCE-induced rise in cAMP, while sAC inhibition abolished SOCE-generated cAMP and significantly reduced SOCE-induced VASP and CREB phosphorylation. This suggests that SOCE in hCASMCs activates sAC which in turn activates the cAMP/PKA/CREB axis. sAC, which is insensitive to G-protein modulation but responsive to Ca2+, pH and ATP, may therefore act as an overlooked regulatory node in vascular Ca2+-transcription coupling.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cátions Bivalentes/metabolismo , Linhagem Celular , Colforsina/farmacologia , Vasos Coronários/citologia , AMP Cíclico/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Humanos , Músculo Liso Vascular/citologia , Fosforilação/efeitos dos fármacos , Tapsigargina/farmacologia , Ativação Transcricional/efeitos dos fármacos
8.
Zhonghua Zhong Liu Za Zhi ; 33(9): 643-8, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-22340042

RESUMO

OBJECTIVE: To observe the expression of Toll-like receptor 8 (TLR8) in human cervical cancer cell-line HeLa cells, and the effects of TLR8 agonist CL075 on the survival and proliferation of HeLa cells. METHODS: PCR and RT-PCR were used to detect the expression of TLR8 in 13 cancer cell lines, and the expression of COX-2, Bcl-2, VEGF mRNA in the HeLa cells stimulated by TLR8 agonist CL075 were also measured by RT-PCR. Immunofluorescence technique was used to determine the exact location of TLR8 in the cells. The percentage of viable cells was determined by trypan blue exclusion after the HeLa cells were stimulated with TLR8 agonist CL075 (0.1 µg/ml, 0.5 µg/ml, 1.0 µg/ml, 2.5 µg/ml), and cell cycle and apoptosis were analyzed by flow cytometry, and the proliferation was measured by MTT. RESULTS: Compared with the other cancer cell lines, the expression of TLR8 in HeLa cells was the highest (703.7 ± 20.6). After stimulation by CL075, the cells had a remarkable increase of the percentage of cells in G(2)/M + S phases. In the control group, the percentage of cells in G(2)/M +S phases was (39.02 ± 2.33)%, whereas after stimulated with 1.0 µg/ml CL075, the percentage of cells in G(2)/M + S phases reached the highest ratio (57.67 ± 1.73)%, and the percentage of cells in G(2)/M + S phases had a less decrease after 2.5 µg/ml CL075 stimulation and the percentage was (56.14 ± 3.73)%. After the CL075 treatment, there was no significant changes of apoptosis compared with that of the control cells (P > 0.05), but after DDP treatment the apoptosis had a significant change (P < 0.01). After stimulation by 1.0 µg/ml CL075 for 24 h, no significant difference (P > 0.05) was found by MTT test, but a significant difference was found at 48 h and 72 h (P < 0.01). An increased expression of COX-2, Bcl-2 and VEGF mRNA was observed in HeLa cells after stimulation by TLR8 agonist CL075 for 24 h and 48 h (P < 0.05). CONCLUSIONS: Expression of TLR8 is significantly increased in HeLa cells. The proportion of cells at different phases has a significant change after CL075 stimulation, which may up-regulate the proliferation of HeLa cells. These data suggested that TLR8 agonist may influence the tumor development and TLR8 may become a potential target in the treatment for cervical cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinolinas/farmacologia , Tiazóis/farmacologia , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Receptor 8 Toll-Like/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA