Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 586: 216690, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307410

RESUMO

The high mutation rate of CTNNB1 (37 %) and Wnt-ß-catenin signal-associated genes (54 %) has been notified in hepatocellular carcinoma (HCC). The activation of Wnt-ß-catenin signal pathway was reported to be associated with an immune "desert" phenotype, but the underlying mechanism remains unclear. Here we mainly employed orthotopic HCC models to explore on it. Mass cytometry depicted the immune contexture of orthotopic HCC syngeneic grafts, unveiling that the exogenous expression of ß-catenin significantly increased the percentage of myeloid-derived suppressor cells (MDSCs) and decreased the percentage of CD8+ T-cells. Flow cytometry and immunohistochemistry further confirmed the findings. The protein microarray analysis, Western blot and PCR identified PF4 as its downstream regulating cytokine. Intratumorally injection of cytokine PF4 enhanced the accumulation of MDSCs. Knockout of PF4 abolished the effect of ß-catenin on recruiting MDSCs. Chromatin immunoprecipitation and luciferase reporter assay demonstrated that ß-catenin increases the mRNA level of PF4 via binding to PF4's promoter region. In vitro chemotaxis assay and in vivo administration of specific inhibitors identified CXCR3 on MDSCs as receptor for recruiting PF4. Lastly, the significant correlations across ß-catenin, PF4 and MDSCs and CD8+ T-cells infiltration were verified in HCC clinical samples. Our results unveiled HCC tumor cell intrinsic hyperactivation of ß-catenin can recruit MDSC through PF4-CXCR3, which contributes to the formation of immune "desert" phenotype. Our study provided new insights into the development of immunotherapeutic strategy of HCC with CTNNB1 mutation. SIGNIFICANCE: This study identifies PF4-CXCR3-MDSCs as a downstream mechanism underlying CTNNB1 mutation associated immune "desert" phenotype.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Neoplasias Hepáticas/patologia , Células Supressoras Mieloides/metabolismo , Receptores CXCR3/metabolismo , Via de Sinalização Wnt/genética
2.
Gastroenterology ; 164(3): 407-423.e17, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574521

RESUMO

BACKGROUND & AIMS: Lack of thorough knowledge about the complicated immune microenvironment (IM) within a variety of liver metastases (LMs) leads to inappropriate treatment and unsatisfactory prognosis. We aimed to characterize IM subtypes and investigate potential mechanisms in LMs. METHODS: Mass cytometry was applied to characterize immune landscape of a primary liver cancers and liver metastases cohort. Transcriptomic and whole-exome sequencing were used to explore potential mechanisms across distinct IM subtypes. Single-cell transcriptomic sequencing, multiplex fluorescent immunohistochemistry, cell culture, mouse model, Western blot, quantitative polymerase chain reaction, and immunohistochemistry were used for validation. RESULTS: Five IM subtypes were revealed in 100 LMs and 50 primary liver cancers. Patients featured terminally exhausted (IM1) or rare T-cell-inflamed (IM2 and IM3) immune characteristics showed worse outcome. Increased intratumor heterogeneity, enriched somatic TP53, KRAS, APC, and PIK3CA mutations and hyperactivated hypoxia signaling accounted for the formation of vicious subtypes. SLC2A1 promoted immune suppression and desert via increasing proportion of Spp1+ macrophages and their inhibitory interactions with T cells in liver metastatic lesions. Furthermore, SLC2A1 promoted immune escape and LM through inducing regulatory T cells, including regulatory T cells and LAG3+CD4+ T cells in primary colorectal cancer. CONCLUSIONS: The study provided integrated multi-omics landscape of LM, uncovering potential mechanisms for vicious IM subtypes and confirming the roles of SLC2A1 in regulating tumor microenvironment remodeling in both primary tumor and LM lesions.


Assuntos
Neoplasias Hepáticas , Multiômica , Animais , Camundongos , Mutação , Neoplasias Hepáticas/patologia , Sequenciamento do Exoma , Microambiente Tumoral
3.
Sci Adv ; 7(51): eabg3750, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919432

RESUMO

Heterogeneity is the major challenge for cancer prevention and therapy. Here, we first constructed high-resolution spatial transcriptomes of primary liver cancers (PLCs) containing 84,823 spots within 21 tissues from seven patients. The progressive comparison of spatial tumor microenvironment (TME) characteristics from nontumor to leading-edge to tumor regions revealed that the tumor capsule potentially affects intratumor spatial cluster continuity, transcriptome diversity, and immune cell infiltration. Locally, we found that the bidirectional ligand-receptor interactions at the 100-µm-wide cluster-cluster boundary contribute to maintaining intratumor architecture and the PROM1+ and CD47+ cancer stem cell niches are related to TME remodeling and tumor metastasis. Last, we proposed a TLS-50 signature to accurately locate tertiary lymphoid structures (TLSs) spatially and unveiled that the distinct composition of TLSs is shaped by their distance to tumor cells. Our study provides previous unknown insights into the diverse tumor ecosystem of PLCs and has potential benefits for cancer intervention.

4.
Cancer Biol Med ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591416

RESUMO

The Wnt/ß-catenin signaling pathway regulates many aspects of tumor biology, and many studies have focused on the role of this signaling pathway in tumor cells. However, it is now clear that tumor development and metastasis depend on the two-way interaction between cancer cells and their environment, thereby forming a tumor microenvironment (TME). In this review, we discuss how Wnt/ß-catenin signaling regulates cross-interactions among different components of the TME, including immune cells, stem cells, tumor vasculature, and noncellular components of the TME in hepatocellular carcinoma. We also investigate their preclinical and clinical insights for primary liver cancer intervention, and explore the significance of using Wnt/ß-catenin mutations as a biomarker to predict resistance in immunotherapy.

5.
Hepatology ; 74(6): 3249-3268, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343359

RESUMO

BACKGROUND AND AIMS: Metabolic reprogramming plays an important role in tumorigenesis. However, the metabolic types of different tumors are diverse and lack in-depth study. Here, through analysis of big databases and clinical samples, we identified a carbamoyl phosphate synthetase 1 (CPS1)-deficient hepatocellular carcinoma (HCC) subtype, explored tumorigenesis mechanism of this HCC subtype, and aimed to investigate metabolic reprogramming as a target for HCC prevention. APPROACH AND RESULTS: A pan-cancer study involving differentially expressed metabolic genes of 7,764 tumor samples in 16 cancer types provided by The Cancer Genome Atlas (TCGA) demonstrated that urea cycle (UC) was liver-specific and was down-regulated in HCC. A large-scale gene expression data analysis including 2,596 HCC cases in 7 HCC cohorts from Database of HCC Expression Atlas and 17,444 HCC cases from in-house hepatectomy cohort identified a specific CPS1-deficent HCC subtype with poor clinical prognosis. In vitro and in vivo validation confirmed the crucial role of CPS1 in HCC. Liquid chromatography-mass spectrometry assay and Seahorse analysis revealed that UC disorder (UCD) led to the deceleration of the tricarboxylic acid cycle, whereas excess ammonia caused by CPS1 deficiency activated fatty acid oxidation (FAO) through phosphorylated adenosine monophosphate-activated protein kinase. Mechanistically, FAO provided sufficient ATP for cell proliferation and enhanced chemoresistance of HCC cells by activating forkhead box protein M1. Subcutaneous xenograft tumor models and patient-derived organoids were employed to identify that blocking FAO by etomoxir may provide therapeutic benefit to HCC patients with CPS1 deficiency. CONCLUSIONS: In conclusion, our results prove a direct link between UCD and cancer stemness in HCC, define a CPS1-deficient HCC subtype through big-data mining, and provide insights for therapeutics for this type of HCC through targeting FAO.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Animais , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Metilação de DNA , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia
6.
Cancer Res ; 81(18): 4778-4793, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301762

RESUMO

N6-methyladenosine (m6A) has been reported as an important mechanism of posttranscriptional regulation. Programmed death-ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. Here we report ALKBH5 as an important m6A demethylase that orchestrates PD-L1 expression in intrahepatic cholangiocarcinoma (ICC). Regulation of PD-L1 expression by ALKBH5 was confirmed in human ICC cell lines. Sequencing of the m6A methylome identified PD-L1 mRNA as a direct target of m6A modification whose levels were regulated by ALKBH5. Furthermore, ALKBH5 and PD-L1 mRNA were shown to interact. ALKBH5 deficiency enriched m6A modification in the 3'UTR region of PD-L1 mRNA, thereby promoting its degradation in a YTHDF2-dependent manner. In vitro and in vivo, tumor-intrinsic ALKBH5 inhibited the expansion and cytotoxicity of T cells by sustaining tumor cell PD-L1 expression. The ALKBH5-PD-L1-regulating axis was further confirmed in human ICC specimens. Single-cell mass cytometry analysis unveiled a complex role of ALKBH5 in the tumor immune microenvironment by promoting the expression of PD-L1 on monocytes/macrophages and decreasing the infiltration of myeloid-derived suppressor-like cells. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with strong nuclear expression patterns of ALKBH5 are more sensitive to anti-PD1 immunotherapy. Collectively, these results describe a new regulatory mechanism of PD-L1 by mRNA epigenetic modification by ALKBH5 and the potential role of ALKBH5 in immunotherapy response, which might provide insights for cancer immunotherapies. SIGNIFICANCE: This study identifies PD-L1 mRNA as a target of ALKBH5 and reveals a role for ALKBH5 in regulating the tumor immune microenvironment and immunotherapy efficacy.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Antígeno B7-H1/genética , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunomodulação , Camundongos , Ligação Proteica , Estabilidade de RNA , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Adv Sci (Weinh) ; 8(11): e2003897, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34105295

RESUMO

Molecular heterogeneity of hepatobiliary tumor including intertumoral and intratumoral disparity always leads to drug resistance. Here, seven hepatobiliary tumor organoids are generated to explore heterogeneity and evolution via single-cell RNA sequencing. HCC272 with high status of epithelia-mesenchymal transition proves broad-spectrum drug resistance. By examining the expression pattern of cancer stem cells markers (e.g., PROM1, CD44, and EPCAM), it is found that CD44 positive population may render drug resistance in HCC272. UMAP and pseudo-time analysis identify the intratumoral heterogeneity and distinct evolutionary trajectories, of which catenin beta-1 (CTNNB1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage expression clusters are commonly shared across hepatobiliary organoids. CellphoneDB analysis further implies that metabolism advantage organoids with enrichment of hypoxia signal upregulate NEAT1 expression in CD44 subgroup and mediate drug resistance that relies on Jak-STAT pathway. Moreover, metabolism advantage clusters shared in several organoids have similar characteristic genes (GAPDH, NDRG1 (N-Myc downstream regulated 1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an independent risk factor and predictor for patient survival. This study delineates heterogeneity of hepatobiliary tumor organoids and proposes that the collaboration of intratumoral heterogenic subpopulations renders malignant phenotypes and drug resistance.


Assuntos
Doenças do Sistema Digestório/genética , Neoplasias Gastrointestinais/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , RNA Longo não Codificante/genética , beta Catenina/genética , Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Proteínas de Ciclo Celular/genética , Doenças do Sistema Digestório/tratamento farmacológico , Doenças do Sistema Digestório/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Frutose-Bifosfato Aldolase/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Receptores de Hialuronatos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Janus Quinases/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , RNA-Seq , Fatores de Transcrição STAT/genética , Análise de Célula Única , Transcriptoma/genética
8.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188391, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32659252

RESUMO

Lenvatinib, a multi-target tyrosine kinase inhibitor (TKI), is an emerging first-line therapy for hepatocellular carcinoma (HCC). Its application has changed the status of sorafenib as the only first-line TKI treatment for HCC for more than a decade. Evidence has shown that lenvatinib possesses antitumor proliferation and immunomodulatory activity in preclinical studies. In comparison, lenvatinib was non-inferior to sorafenib in overall survival (OS), and even shows superiority with regard to all the secondary efficacy endpoints. Immune-checkpoint inhibitors(ICIs)are now being incorporated into HCC treatment. Positive outcomes have been achieved in the combination of lenvatinib plus ICIs, bringing broader prospects for HCC. This review presents an overview on the therapeutic mechanisms and clinical efficacy of lenvatinib in HCC, and we discuss the future perspectives of lenvatinib in HCC management with focus on biomarker-guided precision medicine.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/metabolismo , Humanos , Imunomodulação , Imunoterapia , Neoplasias Hepáticas/metabolismo , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA