Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 18(13): 9511-9524, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38499440

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Barreira Hematoencefálica/patologia , Elétrons , Transporte Biológico , Neoplasias Encefálicas/genética , Mitocôndrias , Linhagem Celular Tumoral , Microambiente Tumoral
3.
ACS Appl Mater Interfaces ; 16(8): 9816-9825, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38381128

RESUMO

Imaging-guided photodynamic therapy (PDT) holds great potential for tumor therapy. However, achieving the synergistic enhancement of the reactive oxygen species (ROS) generation efficiency and fluorescence emission of photosensitizers (PSs) remains a challenge, resulting in suboptimal image guidance and theranostic efficacy. The hypoxic tumor microenvironment also hinders the efficacy of PDT. Herein, we propose a "two-stage rocket-propelled" photosensitive system for tumor cell ablation. This system utilizes MitoS, a mitochondria-targeted PS, to ablate tumor cells. Importantly, MitoS can react with HClO to generate a more efficient PS, MitoSO, with a significantly improved fluorescence quantum yield. Both MitoS and MitoSO exhibit less O2-dependent type I ROS generation capability, inducing apoptosis and ferroptosis. In vivo PDT results confirm that this mitochondrial-specific type I-II cascade phototherapeutic strategy is a potent intervention for tumor downstaging. This study not only sheds light on the correlation between the PS structure and the ROS generation pathway but also proposes a novel and effective strategy for tumor downstaging intervention.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Medicina de Precisão , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
4.
J Colloid Interface Sci ; 659: 320-329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176241

RESUMO

The efficacy of imaging-guided photodynamic therapy (PDT) is compromised by the attenuation of fluorescence and decline in reactive oxygen species (ROS) generation efficiency in the physiological environment of conventional photosensitizers, limited near-infrared (NIR) absorption, and high systemic cytotoxicity. This paper presents the synthesis of two cyclometalated Ir (III) complexes (Ir-thpy and Ir-ppy) by using a triphenylamine derivative (DPTPA) as the primary ligand and their encapsulation into an amphiphilic phospholipid to form nanoparticles (NPs). These complexes exhibit aggregation-induced emission features and remarkably enhanced ROS generation compared to Chlorin e6 (Ce6). Moreover, Ir-thpy NPs possess the unique ability to selectively target mitochondria, leading to depolarization of the mitochondrial membrane potential and ultimately triggering apoptosis. Notably, Ir-thpy NPs exhibit exceptional photocytotoxicity even towards cisplatin-resistant A549/DDP tumor cells. In vivo two-photon imaging verified the robust tumor-targeting efficacy of Ir-thpy NPs. The in vivo results unequivocally demonstrate that Ir-thpy NPs exhibit excellent tumor ablation along with remarkable biocompatibility. This study presents a promising approach for the development of multifunctional Ir-NPs for two-photon imaging-guided PDT and provides novel insights for potential clinical applications in oncology.


Assuntos
Nanopartículas , Fotoquimioterapia , Irídio/farmacologia , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Mitocôndrias , Linhagem Celular Tumoral
5.
BMC Musculoskelet Disord ; 24(1): 243, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997961

RESUMO

PURPOSE: Proximal humerus fractures (PHFs) are common. With the development of locking plates, open reduction and internal fixation (ORIF) of the proximal humerus can provide excellent clinical outcomes. The quality of fracture reduction is crucial in the locking plate fixation of proximal humeral fractures. The purpose of this study was to determine the impact of 3-dimensional (3D) printing technology and computer virtual technology assisted preoperative simulation on the reduction quality and clinical outcomes of 3-part and 4-part proximal humeral fractures. METHOD: A retrospective comparative analysis of 3-part and 4-part PHFs undergoing open reduction internal fixation was performed. Patients were divided into 2 groups according to whether computer virtual technology and 3D printed technology were used for preoperative simulation: the simulation group and the conventional group. Operative time, intraoperative bleeding, hospital stay, quality of fracture reduction, Constant scores, American Society for Shoulder and Elbow Surgery (ASES) scores, shoulder range of motion, complications, and revision surgeries were assessed. RESULTS: This study included 67 patients (58.3%) in the conventional group and 48 patients (41.7%) in the simulation group. The patient demographics and fracture characteristics were comparable in these groups. Compared with the conventional group, the simulation group had shorter operation time and less intraoperative bleeding (P < 0.001, both). Immediate postoperative assessment of fracture reduction showed a higher incidence of greater tuberosity cranialization of < 5 mm, neck-shaft angle of 120° to 150°, and head shaft displacement of < 5 mm in the simulation group. The incidence of good reduction was 2.6 times higher in the simulation group than in the conventional group (95% CI, 1.2-5.8). At the final follow-up, the chance of forward flexion > 120° (OR 5.8, 95% CI 1.8-18.0) and mean constant score of > 65 (OR 3.4, 95% CI 1.5-7.4) was higher in the simulation group than the conventional group, as well as a lower incidence of complications in the simulation group was obtained (OR 0.2, 95% CI 0.1-0.6). CONCLUSIONS: This study identified that preoperative simulation assisted by computer virtual technology and 3D printed technology can improve reduction quality and clinical outcomes in treatment of 3-part and 4-part PHFs.


Assuntos
Fraturas do Úmero , Fraturas do Ombro , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Úmero , Placas Ósseas , Fraturas do Ombro/diagnóstico por imagem , Fraturas do Ombro/cirurgia , Fraturas do Úmero/cirurgia
6.
Angew Chem Int Ed Engl ; 61(15): e202114600, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132748

RESUMO

The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Pontos de Checagem do Ciclo Celular , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
7.
Adv Sci (Weinh) ; 9(8): e2104793, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064653

RESUMO

Due to the aggregation-caused quenching effect and near-infrared I poor penetration capabilities of common fluorescent molecules, their applications in visualized imaging and photoactivated treatment are limited. Therefore, new near-infrared II (NIR-II) molecule (named TST), which had the abilities of aggregation-induced emission (AIE) and photothermal therapy are synthesized. Moreover, in order to further improve its fluorescent yield and therapeutic effect, camptothecin prodrug (CPT-S-PEG) and novel immune checkpoint inhibitor AZD4635 are used to co-assemble with TST into nanoparticles for drug delivery. On account of the strong interaction of camptothecin and TST, the intramolecular rotation of TST is limited, thereby inhibiting non-radiation attenuation and promoting fluorescence generation when the nanoparticles are intact. As nanoparticles uptake by cancer cells, redox sensitive CPT-S-PEG is degraded and the nanoparticles disintegrate. The released TST enhances non-radiative attenuation and expedites photothermal conversion because of the removal of the constraint of camptothecin. Furthermore, photothermal therapy induces immunogenic cell death of cancer cells and releases abundant ATP into the tumor microenvironment to recruit immune cells. However, superfluous ATP is converted into immunosuppressive adenosine through the CD39-CD73-A2AR pathway. The AZD4635 released by photothermal disintegration of the nanoparticles just blocks this pathway timely, achieving favorable synergistic effect of photothermal therapy, chemotherapy, and immunotherapy.


Assuntos
Nanopartículas , Pró-Fármacos , Imunoterapia , Nanopartículas/uso terapêutico , Fototerapia/métodos , Terapia Fototérmica , Pró-Fármacos/farmacologia
8.
Anal Chem ; 94(2): 811-819, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34962373

RESUMO

Inflammation exists in the microenvironment of most, if not virtually all, tumors, which greatly exacerbates the difficulty of cancer treatment. Considering the superiority of activatable photosensitizers (PSs), a novel strategy of 'making friends with the enemy' for tumor treatment was proposed. In this strategy, the "enemy" refers to inflammatory cytokines and the tumor site is targeted by detecting the enemy. Upon detection, a dichromatic fluorescence signal is released and the PS is activated specifically by the inflammatory cytokines. In this study, a multifunctional PS (TPE-PTZ-Py) was rationally designed, which can be activated specifically under the synergistic action of hypochlorous acid (HClO) (one kind of inflammatory cytokines) and acid (one typical marker of tumor), and output a ratiometric fluorescence signal simultaneously. The sulfoxide analogue (TPE-PTZO-PyH) as the response product effectively produced 1O2 (1.8-fold higher than that obtained with Rose Bengal) and showed high phototoxicity (IC50 < 7.6 µM). More importantly, imaging analyses confirmed that TPE-PTZ-Py could be activated in human cervical cancer tissue. To date, several phenothiazine (PTZ)-based fluorescent probes have been developed for the selective sensing and imaging of HClO in subcellular organelles; however, this is the first phenothiazine-based nanodrug designed for the treatment of inflammation-associated tumors with a few side effects.


Assuntos
Fotoquimioterapia , Neoplasias do Colo do Útero , Feminino , Corantes Fluorescentes , Humanos , Ácido Hipocloroso/análise , Microscopia de Fluorescência/métodos , Microambiente Tumoral , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico
9.
J Nanobiotechnology ; 19(1): 254, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425820

RESUMO

Developing novel photosensitizers for deep tissue imaging and efficient photodynamic therapy (PDT) remains a challenge because of the poor water solubility, low reactive oxygen species (ROS) generation efficiency, serve dark cytotoxicity, and weak absorption in the NIR region of conventional photosensitizers. Herein, cyclometalated iridium (III) complexes (Ir) with aggregation-induced emission (AIE) feature, high photoinduced ROS generation efficiency, two-photon excitation, and mitochondria-targeting capability were designed and further encapsulated into biocompatible nanoparticles (NPs). The Ir-NPs can be used to disturb redox homeostasis in vitro, result in mitochondrial dysfunction and cell apoptosis. Importantly, in vivo experiments demonstrated that the Ir-NPs presented obviously tumor-targeting ability, excellent antitumor effect, and low systematic dark-toxicity. Moreover, the Ir-NPs could serve as a two-photon imaging agent for deep tissue bioimaging with a penetration depth of up to 300 µm. This work presents a promising strategy for designing a clinical application of multifunctional Ir-NPs toward bioimaging and PDT.


Assuntos
Irídio/farmacologia , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Morte Celular , Linhagem Celular Tumoral , Diagnóstico por Imagem , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
10.
Adv Sci (Weinh) ; 8(17): e2004566, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197052

RESUMO

Oncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes. Meanwhile, the MitoMN can induce oncosis in a light-activated manner, which results in the enlargement of mitochondria and the death of cancer cells. Using structured illumination microscopy (SIM), MitoMN-stained mitochondria with a dual-color response reveals, for the first time, how swelled mitochondria interacts and fuses with each other for a nonlinear enlargement to accelerate oncosis into an irreversible stage. With this sign of irreversible oncosis revealed by MitoMN, oncosis can be segregated into three stages, including before oncosis, initial oncosis, and accelerated oncosis.


Assuntos
Morte Celular/fisiologia , DNA Mitocondrial/metabolismo , Desenho de Equipamento/métodos , Microscopia/instrumentação , Microscopia/métodos , Mitocôndrias/metabolismo , Células Cultivadas , Luz , Membranas Mitocondriais/metabolismo
11.
Adv Sci (Weinh) ; 8(8): 2004379, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33898198

RESUMO

Nuclei and mitochondria are the only cellular organelles containing genes, which are specific targets for efficient cancer therapy. So far, several photosensitizers have been reported for mitochondria targeting, and another few have been reported for nuclei targeting. However, none have been reported for photosensitization in both mitochondria and nucleus, especially in cascade mode, which can significantly reduce the photosensitizers needed for maximal treatment effect. Herein, a light-driven, mitochondria-to-nucleus cascade dual organelle cancer cell ablation strategy is reported. A functionalized iridium complex, named BT-Ir, is designed as a photosensitizer, which targets mitochondria first for photosensitization and subsequently is translocated to a cell nucleus for continuous photodynamic cancer cell ablation. This strategy opens new opportunities for efficient photodynamic therapy.


Assuntos
Núcleo Celular/efeitos dos fármacos , Irídio/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Técnicas de Ablação/métodos , Linhagem Celular Tumoral , Humanos
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119457, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33485241

RESUMO

The unbalanced metabolism of sulfur dioxide can cause various diseases, such as neurological disorders and lung cancer. Until now, some researches revealed that the normal function of lysosomes would be disrupted by its abnormal viscosity. As a signal molecule, sulfur dioxide (SO2) plays an important role in lysosome metabolism. However, the connection of metabolism between the SO2 and viscosity in lysosomes is still unknown. Herein, we developed a benzothiazole-based near-infrared (NIR) fluorescent probe (Triph-SZ), which can monitor the SO2 derivatives and respond to the change of viscosity in lysosomes through two-photon imaging. Triph-SZ present high sensitivity and selectivity fluorescence response with the addition of SO2 derivatives based on the nucleophilic addition, and it also exhibits a sensitive fluorescence enhancement to environmental viscosity, which allows Triph-SZ to be employed to monitor the level of HSO3- and viscosity changes in lysosomes by the two-photon fluorescence lifetime imaging microscopy.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Células HeLa , Humanos , Microscopia de Fluorescência , Dióxido de Enxofre , Viscosidade
13.
Anal Chem ; 93(3): 1612-1619, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33381958

RESUMO

The misregulation of nucleic acids behavior leads to cell dysfunction and induces serious diseases. A ratiometric fluorescence probe is a powerful tool to study the dynamic behavior and function relationships of nucleic acids. However, currently, no such effective probe has been reported for in situ, real-time tracking of nucleic acids in living cells and tissue sections. Herein, the unique probe named QPP-AS was rationally designed for ratiometric fluorescence response to nucleic acids through skillful regulation of the intramolecular charge-transfer capabilities of the electron acceptor and donor. Encouraged by the advantages of the selective nucleic acid response, ideal biocompatibility, and high signal-to-noise ratio, QPP-AS has been applied for in situ, real-time ratiometric fluorescence imaging of nucleic acids in living cells for the first time. Furthermore, we have demonstrated that QPP-AS is capable of visualizing the dynamic behavior of nucleic acids during different cellular processes (e.g., cell division and apoptosis) by ratiometric fluorescence imaging. More significantly, QPP-AS has been successfully used for ratiometric fluorescence imaging of nucleic acids in human tissue sections, which provides not only the cell contour, nuclear morphology, and nuclear-plasma ratio but also the nucleic acid content information and may greatly improve accuracy in clinicopathological diagnosis.


Assuntos
Adenocarcinoma Bronquioloalveolar/diagnóstico por imagem , Corantes Fluorescentes/química , Ácidos Nucleicos/análise , Imagem Óptica , Células A549 , Humanos
14.
Angew Chem Int Ed Engl ; 59(24): 9719-9726, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32173994

RESUMO

G-quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G-quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE, which showed distinguishable fluorescence lifetime responses between G-quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf ) enhancement upon G-quadruplex binding. We determined two NBTE-G-quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G-quadruplexes using three arms through π-π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G-quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G-quadruplex DNA in live cells with NBTE and found G-quadruplex DNA content in cancer cells is 4-fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.


Assuntos
DNA/química , Quadruplex G , Linhagem Celular Tumoral , DNA/análise , Humanos , Fótons
15.
J Inorg Biochem ; 205: 110976, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926377

RESUMO

Metal N-Heterocyclic carbene (NHC) complexes are expected to be new opportunities for the development of anticancer metallodrugs. In this work, two near-infrared (NIR) emitting iridium(III)-NHC complexes Ir1 and Ir2 have been explored as mitochondria-targeted anticancer and photodynamic agents. These complexes are more cytotoxic than cisplatin against the cancer cells screened, and display higher cytotoxicity in the presence of 450 nm and 630 nm LED light. Colocalization and quantitative studies indicated that these complexes could specially localize to mitochondria. Mechanism studies show that these complexes increase intracellular reactive oxygen species (ROS) level, reduce mitochondrial membrane potential (MMP) and induce some degree of early apoptosis. Further studies found that Ir1could induce mitophagy at dark and necrocytosis under the irradiation of 630 nm LED light. The in vitro and in vivo photoxicity studies revealed that Ir1 is a promising photodynamic therapy (PDT) agent and could significantly inhibit tumor growth.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Irídio/química , Irídio/farmacologia , Metano/análogos & derivados , Metano/síntese química , Metano/química , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Chem Commun (Camb) ; 55(70): 10472-10475, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31411208

RESUMO

A mitochondria-targeted photodynamic therapy (PDT) agent was designed and synthesized. Upon light irradiation, it can produce photoacid and its photolysis products can further sensitize 1O2 generation, causing dual-mode (oxygen-independent and oxygen-dependent) photodynamic damage in mitochondria and killing cancer cells effectively even under hypoxic conditions.


Assuntos
Irídio/farmacologia , Mitocôndrias/metabolismo , Fotoquimioterapia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Oxigênio Singlete/metabolismo
17.
Dalton Trans ; 47(20): 6942-6953, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29721561

RESUMO

The development of iridium complexes as potent anticancer agents has received increasing attention in recent years. In this study, four cyclometalated Ir(iii) complexes with good photophysical properties and potent anticancer activity have been synthesized and characterized. They are taken up by human lung adenocarcinoma A549 cells very quickly and specifically target mitochondria. Mechanism studies reveal that one of them, namely IrM2, induces paraptosis accompanied by excessive mitochondria-derived cytoplasmic vacuoles. Meanwhile, IrM2 affects the ubiquitin-proteasome system (UPS) and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, IrM2 rapidly induces a series of mitochondria-related dysfunctional events, including the loss of mitochondrial membrane potential, cellular ATP depletion, mitochondrial respiration inhibition and reactive oxygen species (ROS) elevation. The rapid loss of mitochondrial functions, elevation of ROS and impairment of the UPS induced by IrM2 lead to the collapse of mitochondria and the subsequent cytoplasmic vacuolation before the cells are ready to start the mechanisms of apoptosis and/or autophagy. Among the ROS, superoxide anion radicals play a critical role in IrM2-mediated cell death. In vivo studies reveal that IrM2 can significantly inhibit tumor growth in a mouse model. This work gives useful insights into the design and anticancer mechanisms of new metal-based anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Irídio/farmacologia , Mitocôndrias/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Células HeLa , Humanos , Irídio/química , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA