Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Sleep Breath ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012435

RESUMO

PURPOSE: To continuously and dynamically monitor the sleep status of patients in the acute phase of cerebral infarction, and to investigate the characteristics of acute cerebral infarction(ACI)associated with sleep-disordered breathing (SDB), variations in sleep structure, and changes in sleep circadian rhythms. METHODS: Patients with ACI within 48 h of onset who were admitted to the Department of Neurology at Kailuan General Hospital from November 2020 to December 2022 were selected. Detailed baseline information such as age, gender, smoking history, drinking history, were recorded for the selected participants. From the beginning of their hospitalization, the selected participants were monitored for their sleep status continuously for 5 days using the Intelligent Mattress-based Sleep Monitoring Platform System(IMSMPS). Based on the heart rate data obtained from the monitoring, the interdaily stability (IS) and intradaily variability (IV) of the sleep circadian rhythm were calculated. RESULTS: 1,367 patients with ACI were selected. Monitoring results over 5 days indicated 147 cases (10.75%) without SDB, and 1,220 cases (89.25%) with SDB. Among the group with SDB, there were 248 cases (18.14%) with continuous mild SDB, 395 cases (28.90%) with moderate SDB, 295 cases (21.58%) with severe SDB, and 282 cases (20.63%) that fluctuated between different severity levels. Within this fluctuating group, 152 cases (53.90%) fluctuated between two severity levels, 120 cases (42.55%) between three levels, and 10 cases (3.55%) among all four levels. There were statistically significant differences (P < 0.05) in the sleep latency, sleep efficiency, non-rapid eye movement stages 1-2, rapid eye movement, proportion of non-rapid eye movement, proportion of rapid eye movement, wake after sleep onset, time out of bed, number of awakenings, respiratory variability index, and heart rate variability index among patients with ACI monitored from day 1 to 5. However, other monitored sleep structure parameters did not show statistically significant differences (P > 0.05). The coefficient of variation for all sleep monitoring parameters ranged between 14.54 and 36.57%. The IV in the SDB group was higher than in the group without SDB (P < 0.05), and the IS was lower than in the group without SDB (P < 0.05). CONCLUSION: Patients in the acute phase of cerebral infarction have a high probability of accompanying SDB. The sleep structure of these patients shows significant variability based on the onset time of the stroke, and some patients experience fluctuations among different severity levels of SDB. ACI accompanied by SDB can further reduce the IS of a patient's sleep circadian rhythm and increase its IV.

2.
Nano Lett ; 24(25): 7764-7773, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864366

RESUMO

Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.


Assuntos
Imunoterapia , Molibdênio , Terapia Fototérmica , Animais , Camundongos , Imunoterapia/métodos , Humanos , Molibdênio/química , Feminino , Linhagem Celular Tumoral , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Glutationa/química , Glutationa/metabolismo , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Raios Infravermelhos , Selênio/química , Selênio/uso terapêutico , Fototerapia/métodos
3.
Chem Commun (Camb) ; 60(48): 6142-6145, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804211

RESUMO

A programmably engineered stochastic RNA nanowalker powered by duplex-specific nuclease (DSN) is developed. By utilizing poly-adenine-based spherical nucleic acids (polyA-SNA) to accurately regulate the densities of DNA tracks, the nanowalker showcases its capability to identify miRNA-21, miRNA-486, and miRNA-155 with quick kinetics and attomolar sensitivity, positioning it as a promising option for cancer clinical surveillance.


Assuntos
MicroRNAs , MicroRNAs/análise , Humanos , Nanoestruturas/química , Poli A/química , DNA/química , Processos Estocásticos , Técnicas Biossensoriais
4.
Nat Mater ; 23(7): 993-1001, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38594486

RESUMO

DNA origami is capable of spatially organizing molecules into sophisticated geometric patterns with nanometric precision. Here we describe a reconfigurable, two-dimensional DNA origami with geometrically patterned CD95 ligands that regulates immune cell signalling to alleviate rheumatoid arthritis. In response to pH changes, the device reversibly transforms from a closed to an open configuration, displaying a hexagonal pattern of CD95 ligands with ~10 nm intermolecular spacing, precisely mirroring the spatial arrangement of CD95 receptor clusters on the surface of immune cells. In a collagen-induced arthritis mouse model, DNA origami elicits robust and selective activation of CD95 death-inducing signalling in activated immune cells located in inflamed synovial tissues. Such localized immune tolerance ameliorates joint damage with no noticeable side effects. This device allows for the precise spatial control of cellular signalling, expanding our understanding of ligand-receptor interactions and is a promising platform for the development of pharmacological interventions targeting these interactions.


Assuntos
Artrite Reumatoide , DNA , Tolerância Imunológica , Transdução de Sinais , Receptor fas , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Animais , DNA/química , DNA/imunologia , Camundongos , Receptor fas/metabolismo , Receptor fas/imunologia , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/imunologia , Humanos
5.
Nanoscale ; 16(17): 8417-8426, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591110

RESUMO

Tumor recurrence after surgical resection remains a significant challenge in breast cancer treatment. Immune checkpoint blockade therapy, as a promising alternative therapy, faces limitations in combating tumor recurrence due to the low immune response rate. In this study, we developed an implantable photo-responsive self-healing hydrogel loaded with MoS2 nanosheets and the immunoadjuvant R837 (PVA-MoS2-R837, PMR hydrogel) for in situ generation of tumor-associated antigens at the post-surgical site of the primary tumor, enabling sustained and effective activation of the immune response. This PMR hydrogel exhibited potential for near-infrared (NIR) light response, tissue adhesion, self-healing, and sustained adjuvant release. When implanted at the site after tumor resection, NIR irradiation triggered a photothermal effect, resulting in the ablation of residual cancer cells. The in situ-generated tumor-associated antigens promoted dendritic cell (DC) maturation. In a mouse model, PMR hydrogel-mediated photothermal therapy combined with immune checkpoint blockade effectively inhibited the recurrence of resected tumors, providing new insights for combating post-resection breast cancer recurrence.


Assuntos
Adjuvantes Imunológicos , Neoplasias da Mama , Dissulfetos , Hidrogéis , Molibdênio , Recidiva Local de Neoplasia , Molibdênio/química , Molibdênio/farmacologia , Animais , Feminino , Dissulfetos/química , Dissulfetos/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Recidiva Local de Neoplasia/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Humanos , Linhagem Celular Tumoral , Nanoestruturas/química , Camundongos Endogâmicos BALB C , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos de Neoplasias/imunologia , Terapia Fototérmica , Raios Infravermelhos
6.
Small ; 20(30): e2308562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441369

RESUMO

Diagnosis and treatment of tumor especially drug-resistant tumor remains a huge challenge, which requires intelligent nanomedicines with low toxic side effects and high efficacy. Herein, deformable smart DNA nanomachines are developed for synergistic intracellular cancer-related miRNAs imaging and chemo-gene therapy of drug-resistant tumors. The tetrahedral DNA framework (MA-TDNA) with fluorescence quenched component and five antennas is self-assembled first, and then DOX molecules are loaded on the MA-TDNAs followed by linking MUC1-aptamer and Mcl-1 siRNA to the antennas of MA-TDNA, so that the apt-MA-TDNA@DOX-siRNA (DNA nanomachines) is constructed. The DNA nanomachine can respond to two tumor-related miRNAs in vitro and in vivo, which can undergo intelligent miRNA-triggered opening of the framework, resulting in the "turn on" of the fluorescence for sensitively and specifically sensing intracellular miRNAs. Meanwhile, both miRNA-responded rapid release and pH-responded release of DOX are achieved for chemotherapy of tumor. In addition, the gene therapy of the DNA nanomachines is achieved due to the miRNA-specific capture and the RNase H triggered release of Mcl-1 siRNA. The DNA nanomachines intergrading both tumor imaging and chemo-gene therapy in single nanostructures realized efficient tumor-targeted, image-guided, and microenvironment-responsive tumor diagnosis and treatment, which provides a synergetic antitumor effect on drug-resistant tumor.


Assuntos
DNA , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Terapia Genética , MicroRNAs , MicroRNAs/genética , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Terapia Genética/métodos , DNA/química , Animais , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Neoplasias/genética , RNA Interferente Pequeno , Linhagem Celular Tumoral , Espaço Intracelular/metabolismo
7.
ACS Nano ; 18(13): 9613-9626, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502546

RESUMO

Recent discoveries in commensal microbiota demonstrate the great promise of intratumoral bacteria as attractive molecular targets of tumors in improving cancer treatment. However, direct leveraging of in vivo antibacterial strategies such as antibiotics to potentiate cancer therapy often leads to uncertain effectiveness, mainly due to poor selectivity and potential adverse effects. Here, building from the clinical discovery that patients with breast cancer featured rich commensal bacteria, we developed an activatable biointerface by encapsulating commensal bacteria-derived extracellular vesicles (BEV) with a responsive nanocloak to potentiate immunoreactivity against intratumoral bacteria and breast cancer. We show that the interfacially cloaked BEV (cBEV) not only overcame serious systemic side responses but also demonstrated heightened immunogenicity by intercellular responsive immunogenicity, facilitating dendritic cell maturation through activating the cGAS-STING pathway. As a preventive measure, vaccination with nanocloaked cBEVs achieved strong protection against bacterial infection, largely providing prophylactic efficiency against tumor challenges. When treated in conjunction with immune checkpoint inhibitor anti-PD-L1 antibodies, the combined approach elicited a potent tumor-specific immune response, synergistically inhibiting tumor progression and mitigating lung metastases.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Imunoterapia , Neoplasias/terapia , Neoplasias da Mama/metabolismo , Imunidade , Bactérias , Microambiente Tumoral
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 225-230, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387926

RESUMO

OBJECTIVE: To study the serological characteristics of ABO*A2.08 subtype and explore its genetic molecular mechanism. METHODS: ABO blood group identification was performed on proband and her family members by routine serological methods. ABO genotyping and sequence analysis were performed by polymerase chain reaction-sequence specific primer (PCR-SSP), and direct sequencing of PCR products from exons 6 and 7 of ABO gene were directly sequenced and analyzed. The effect of gene mutation in A2.08 subtype on structural stability of GTA protein was investigated by homologous protein conserved analysis, 3D molecular modeling and protein stability prediction. RESULTS: The proband's serological test results showed subtype Ax, and ABO genotyping confirmed that the proband's genotype was ABO*A207/08. Gene sequencing of the proband's father confirmed the characteristic variation of c.539G>C in the 7th exon of ABO gene, leading to the replacement of polypeptide chain p.Arg180Pro (R180P). 3D protein molecular modeling and analysis suggested that the number of hydrogen bonds of local amino acids in the protein structure was changed after the mutation, and protein stability prediction showed that the mutation had a great influence on the protein structure stability. CONCLUSION: The mutation of the 7th exon c.539G>C of ABO gene leads to the substitution of polypeptide chain amino acid, which affects the structural stability of GTA protein and leads to the change of enzyme activity, resulting in the A2.08 phenotype. The mutated gene can be stably inherited.


Assuntos
Peptídeos , Humanos , Recém-Nascido , Feminino , Alelos , Sequência de Bases , Genótipo , Fenótipo
9.
Angew Chem Int Ed Engl ; 63(9): e202314583, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38196289

RESUMO

Biointerfacing nanomaterials with cell membranes has been successful in the functionalization of nanoparticles or nanovesicles, but microbubble functionalization remains challenging due to the unique conformation of the lipid monolayer structure at the gas-liquid interface that provides insufficient surfactant activity. Here, we describe a strategy to rationally regulate the surfactant activity of platelet membrane vesicles by adjusting the ratio of proteins to lipids through fusion with synthetic phospholipids (i.e., liposomes). A "platesome" with the optimized protein-to-lipid ratio can be assembled at the gas-liquid interface in the same manner as pulmonary surfactants to stabilize a microsized gas bubble. Platesome microbubbles (PMBs) inherited 61.4 % of the platelet membrane vesicle proteins and maintained the active conformation of integrin αIIbß3 without the talin 1 for fibrin binding. We demonstrated that the PMBs had good stability, long circulation, and superior functionality both in vitro and in vivo. Moreover, by molecular ultrasound imaging, the PMBs provide up to 11.8 dB of ultrasound signal-to-noise ratio enhancement for discriminating between acute and chronic thrombi. This surface tension regulating strategy may provide a paradigm for biointerfacing microbubbles with cell membranes, offering a potential new approach for the construction of molecular ultrasound contrast agents for the diagnosis of different diseases.


Assuntos
Surfactantes Pulmonares , Trombose , Humanos , Tensoativos , Microbolhas , Fosfolipídeos , Lipoproteínas , Meios de Contraste/química
10.
Adv Sci (Weinh) ; 11(10): e2307048, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109089

RESUMO

Host immune systems serving as crucial defense lines are vital resisting mechanisms against biofilm-associated implant infections. Nevertheless, biofilms hinder the penetration of anti-bacterial species, inhibit phagocytosis of immune cells, and frustrate host inflammatory responses, ultimately resulting in the weakness of the host immune system for biofilm elimination. Herein, a cell-like construct is developed through encapsulation of erythrocyte membrane fragments on the surface of Fe3 O4 nanoparticle-fabricated microbubbles and then loaded with hydroxyurea (EMB-Hu). Under ultrasound (US) stimulation, EMB-Hu undergoes a stable oscillation manner to act in an "exocytosis" mechanism for disrupting biofilm, releasing agents, and enhancing penetration of catalytically generated anti-bacterial species within biofilms. Additionally, the US-stimulated "exocytosis" by EMB-Hu can activate pro-inflammatory macrophage polarization and enhance macrophage phagocytosis for clearance of disrupted biofilms. Collectively, this work has exhibited cell-like microbubbles with US-stimulated "exocytosis" mechanisms to overcome the biofilm barrier and signal macrophages for inflammatory activation, finally achieving favorable therapeutic effects against implant infections caused by methicillin-resistant Staphylococcus aureus (MRSA) biofilms.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Microbolhas , Antibacterianos/farmacologia , Fagocitose , Macrófagos , Biofilmes , Complicações Pós-Operatórias
11.
Materials (Basel) ; 16(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895773

RESUMO

Three monoruthenium complexes 1(PF6)2-3(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L is a 2,5-di(N-methyl-N'-(pyrid-2-yl)amino)pyrazine (dapz) derivative with various substituents, and bpy is 2,2'-bipyridine. The photophysical and electrochemical properties of these compounds have been examined. The solid-state structure of complex 3(PF6)2 is studied by single-crystal X-ray analysis. These complexes show two well-separated emission bands centered at 451 and 646 nm (Δλmax = 195 nm) for 1(PF6)2, 465 and 627 nm (Δλmax = 162 nm) for 2(PF6)2, and 455 and 608 nm (Δλmax = 153 nm) for 3(PF6)2 in dilute acetonitrile solution, respectively. The emission maxima of the higher-energy emission bands of these complexes are similar, while the lower-energy emission bands are dependent on the electronic nature of substituents. These complexes display two consecutive redox couples owing to the stepwise oxidation of the N(CH3)-bridged ligand and ruthenium component. Moreover, these experimental observations are analyzed by computational investigation.

12.
Chem Commun (Camb) ; 59(78): 11736-11739, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703059

RESUMO

The development of enhanced strategies with excellent biocompatibility is critical for electrochemiluminescence (ECL) imaging of single cells. Here, we report an ECL imaging technique for a single cell membrane protein based on a Co3O4 nanozyme catalytic enhancement strategy. Due to the remarkable catalytic performance of Co3O4 nanozymes, H2O2 can be efficiently decomposed into reactive oxygen radicals, and the reaction with L012 was enhanced, resulting in stronger ECL emission. The anti-carcinoembryonic antigen (CEA) was coupled with nanozyme particles to construct a probe that specifically recognized the overexpressed CEA on the MCF-7 cell membrane. According to the locally enhanced visualized luminescence, the rapid ECL imaging of a single cell membrane protein was eventually realized. Accordingly, Co3O4 nanozymes with highly efficient activity will provide new insights into ECL imaging analysis of more biological small molecules and proteins.

13.
Biomaterials ; 301: 122283, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639977

RESUMO

Despite advancements in the treatment of pulmonary cancer, the existence of mucosal barriers in lung still hampered the penetration and diffusion of therapeutic agents and greatly limited the therapeutic benefits. In this work, we reported a novel inhalable pH-responsive tetrahedral DNA nanomachines with simultaneous delivery of immunomodulatory CpG oligonucleotide and PD-L1-targeting antagonistic DNA aptamer (CP@TDN) for efficient treatment of pulmonary metastatic cancer. By precisely controlling the ratios of CpG and PD-L1 aptamer, the obtained CP@TDN could specifically release PD-L1 aptamer to block PD-1/PD-L1 immune checkpoint axis in acidic tumor microenvironment, followed by endocytosis by antigen-presenting cells to generate anti-tumor immune activation and secretion of anti-tumor cytokines. Moreover, inhalation delivery of CP@TDN showed highly-efficient lung deposition with greatly enhanced intratumoral accumulation, ascribing to the DNA tetrahedron-mediated penetration of pulmonary mucosa. Resultantly, CP@TDN could significantly inhibit the growth of metastatic orthotopic lung tumors via the induction of robust antitumor responses. Therefore, our work presents an attractive approach by virtue of biocompatible DNA tetrahedron as the inhalation delivery system for effective treatment of metastatic lung cancer.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Neoplasias Pulmonares/tratamento farmacológico , DNA , Concentração de Íons de Hidrogênio , Microambiente Tumoral
14.
Anal Chem ; 95(30): 11440-11448, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478154

RESUMO

The development of noninvasive and sensitive detection methods for the early diagnosis and monitoring of bladder cancer is critical but challenging. Herein, an ultrasensitive electrochemiluminescence (ECL) immunosensor that uses Ru(bpy)32+-metal-organic framework (Ru-MOF) nanospheres and a DNA tetrahedral (TDN) probe was established for bladder cancer marker complement factor H-related protein (CFHR1) detection. The synthesized Ru(bpy)32+-metal-organic frameworks (Ru-MOFs) served as a linked substrate for immobilization of AuNPs and antibody (Ab2) to prepare the ECL signal probe (Ru-MOF@AuNPs-Ab2), exhibiting a stable and strengthened ECL emission. At the same time, the inherent advantages of TDN probes on the electrode as the capture probe (TDN-Ab1) improve the accessibility of targets to probes. In the presence of CFHR1, the signal probe Ru-MOF@AuNPs-Ab2 was modified on the electrode through immune binding, thereby obtaining an outstanding ECL signal. As expected, the developed ECL immunosensor exhibited splendid performance for CFHR1 detection in the range of 0.1 fg/mL to 10 pg/mL with a quite low detection limit of 0.069 fg/mL. By using the proposed strategy to detect CFHR1 from urine, it showed acceptable accuracy, which can effectively distinguish between bladder cancer patients and healthy samples. This work contributes to a novel, noninvasive, and accurate method for early clinical diagnosis of bladder cancer.

15.
Chem Commun (Camb) ; 59(55): 8568-8571, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338396

RESUMO

An injectable nanocomposite alginate-Ca2+ hydrogel embedded with melittin and polyaniline nanofibers was fabricated for Ca2+-overload and photothermal combination cancer therapy. Melittin disrupts the cell membranes and enhances Ca2+ influx significantly, improving Ca2+-overload treatment, while the polyaniline nanofibers endow the hydrogel with glutathione (GSH) depletion and photothermal ability.


Assuntos
Nanocompostos , Neoplasias , Humanos , Hidrogéis/farmacologia , Meliteno/farmacologia , Alginatos , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico
16.
ACS Appl Mater Interfaces ; 15(21): 25427-25436, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204052

RESUMO

The treatment of cutaneous wounds involving complex biological processes has become a significant public health concern worldwide. Here, we developed an efficient extracellular vesicle (EV) ink to regulate the inflammatory microenvironment and promote vascular regeneration for wound healing. The technology, termed portable bioactive ink for tissue healing (PAINT), leverages bioactive M2 macrophage-derived EVs (EVM2) and a sodium alginate precursor, forming a biocompatible EV-Gel within 3 min after mixing, enabling it to be smeared on wounds in situ to meet diverse morphologies. The bioactive EVM2 reprogram macrophage polarization and promote the proliferation and migration of endothelial cells, thereby effectively regulating inflammation and enhancing angiogenesis in wounds. Through integration with a 3D printing pen, the platform enables EV-Gel to be applied to wound sites having arbitrary shapes and sizes with geometric matches for tissue repairment. When evaluated using a mouse wound model, PAINT technology accelerates cutaneous wound healing by promoting the angiogenesis of endothelial cells and the polarization of macrophages to M2 phenotype in vivo, demonstrating the high potential of bioactive EV ink as a portable biomedical platform for healthcare.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Tinta , Cicatrização , Macrófagos
17.
Adv Healthc Mater ; 12(22): e2300267, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231587

RESUMO

Developing multifunctional nanozymes with photothermal-augmented enzyme-like reaction dynamics in the second near-infrared (NIR-II) biowindow is of significance for nanocatalytic therapy (NCT). Herein, DNA-templated Ag@Pd alloy nanoclusters (DNA-Ag@Pd NCs) are prepared as a kind of novel noble-metal alloy nanozymes by using cytosine-rich hairpin-shaped DNA structures as growth templates. DNA-Ag@Pd NCs exhibit high photothermal conversion efficiency (59.32%) under 1270 nm laser and photothermally augmented peroxidase-mimicking activity with synergetic enhancement between Ag and Pd. In addition, hairpin-shaped DNA structures on the surface of DNA-Ag@Pd NCs endow them with good stability and biocompatibility in vitro and in vivo, and enhanced permeability and retention effect at tumor sites. Upon intravenous injection, DNA-Ag@Pd NCs demonstrate high-contrast NIR-II photoacoustic imaging-guided efficient photothermal-augmented NCT of gastric cancer. This work provides a strategy to synthesize versatile noble-metal alloy nanozymes in a bioinspired way for highly efficient therapy of tumors.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Luz , Neoplasias/terapia , Terapia Fototérmica , Ligas , Fototerapia , Linhagem Celular Tumoral
18.
Anal Chem ; 95(17): 6810-6817, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075136

RESUMO

Membrane protein dimerization regulates numerous cellular biological processes; therefore, highly sensitive and facile detection of membrane protein dimerization are very crucial for clinical diagnosis and biomedical research. Herein, a colorimetric detection of Met dimerization on live cells via smartphone for high-sensitivity sensing of the HGF/Met signaling pathway was developed for the first time. The Met monomers on live cells were recognized by specific ligands (aptamers) first, and the Met dimerizations triggered the proximity-ligation-assisted catalytic hairpin assembly (CHA) reaction to generate large amounts of G-quadruplex (G4) fragments which can further combine hemin to form G4/hemin DNAzymes possessing the horseradish-peroxidase-like catalytic activity for catalyzing the oxidation of ABTS by H2O2 and producing the colorimetric signal (i.e., color change). The colorimetric detection of Met on live cells was then achieved by image acquisition and processing via a smartphone. As a proof-of-principle, the HGF/Met signaling pathway based on Met-Met dimerization was facile monitored, and the human gastric cancer cells MKN-45 with natural Met-Met dimers were sensitively tested and a wide linear working range from 2 to 1000 cells with a low detection limit of 1 cell was obtained. The colorimetric assay possesses a good specificity and high recovery rate of MKN-45 cells spiked in peripheral blood, which indicates that the proposed colorimetric detection of Met dimerization can be used for convenient observation of the HGF/Met signaling pathway and has extensive application prospects in point-of-care testing (POCT) of Met-dimerization-related tumor cells.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Humanos , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Dimerização , DNA Catalítico/metabolismo , Hemina/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Peróxido de Hidrogênio/metabolismo , Limite de Detecção , Transdução de Sinais , Smartphone , Proteínas Proto-Oncogênicas c-met/metabolismo
19.
Biosens Bioelectron ; 231: 115273, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054599

RESUMO

Nondestructive separation/enrichment and reliable detection of extremely rare circulating tumor cells (CTCs) in peripheral blood are of considerable importance in tumor precision diagnosis and treatment, yet this remains a big challenge. Herein, a novel strategy for nondestructive separation/enrichment and ultra-sensitive surface-enhanced Raman scattering (SERS)-based enumeration of CTCs is proposed via aptamer recognition and rolling circle amplification (RCA). In this work the magnetic beads modified with "Aptamer (Apt)-Primer" (AP) probes were utilized to specifically capture CTCs, and then after magnetic separation/enrichment, the RCA-powered SERS counting and benzonase nuclease cleavage-assisted nondestructive release of CTCs were realized, respectively. The AP was assembled by hybridizing the EpCAM-specific aptamer with a primer, and the optimal AP contains 4 mismatched bases. The RCA enhanced SERS signal nearly 4.5-fold, and the SERS strategy has good specificity, uniformity and reproducibility. The proposed SERS detection possesses a good linear relationship with the concentration of MCF-7 cells spiked in PBS with the limit of detection (LOD) of 2 cells/mL, which shows good potential practicality for detecting CTCs in blood with recoveries ranging from 100.56% to 116.78%. Besides, the released CTCs remained good cellular activity with the normal proliferation after re-culture for 48 h and normal growth for at least three generations. The proposed strategy of nondestructive separation/enrichment and SERS-based sensitive enumeration is promising for reliable analysis of EpCAM-positive CTCs in blood, which is expected to provide a powerful tool for analysis of extremely rare circulating tumor cells in complex peripheral blood for liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Células Neoplásicas Circulantes , Humanos , Molécula de Adesão da Célula Epitelial , Células Neoplásicas Circulantes/patologia , Reprodutibilidade dos Testes
20.
Chem Commun (Camb) ; 59(27): 4047-4050, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36928909

RESUMO

Herein, we present a poly-adenine (polyA)-mediated programmably engineered FRET-nanoflare for ratiometric intracellular ATP imaging with anti-interference capability. The programmable polyA attachment is advantageous in enhancing the signal response for ATP. Moreover, the FRET-based nanoflare is capable of avoiding false-positive signals due to probe degradation in a complex environment, which has great potential for clinical diagnosis.


Assuntos
Diagnóstico por Imagem , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Trifosfato de Adenosina , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA