Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Elife ; 132024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037770

RESUMO

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Assuntos
Quirópteros , Fibroblastos , Quirópteros/metabolismo , Humanos , Fibroblastos/metabolismo , Animais , Metabolômica , Espécies Reativas de Oxigênio/metabolismo , Proteômica/métodos , Linhagem Celular , Consumo de Oxigênio , Multiômica
2.
Nat Commun ; 15(1): 5833, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992033

RESUMO

Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.


Assuntos
Anticorpos Antivirais , Arbovírus , Humanos , Arbovírus/imunologia , Arbovírus/isolamento & purificação , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Peptídeos/imunologia , Peptídeos/química , Infecção por Zika virus/virologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/sangue , Zika virus/imunologia , Epitopos/imunologia , Testes Sorológicos/métodos , Infecções por Arbovirus/virologia , Infecções por Arbovirus/imunologia , Proteoma , Colômbia , Feminino , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Masculino
3.
Commun Chem ; 7(1): 158, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003409

RESUMO

Chemotherapy-induced drug resistance remains a major cause of cancer recurrence and patient mortality. ATP binding cassette subfamily B member 1 (ABCB1) transporter overexpression in tumors contributes to resistance, yet current ABCB1 inhibitors have been unsuccessful in clinical trials. To address this challenge, we propose a new strategy using tryptophan as a lead molecule for developing ABCB1 inhibitors. Our idea stems from our studies on bat cells, as bats have low cancer incidences and high ABCB1 expression. We hypothesized that potential ABCB1 substrates in bats could act as competitive inhibitors in humans. By molecular simulations of ABCB1-substrate interactions, we generated a benzylated Cyclo-tryptophan (C3N-Dbn-Trp2) that inhibits ABCB1 activity with efficacy comparable to or better than the classical inhibitor, verapamil. C3N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells with no adverse effect on cell proliferation. Our unique approach presents a promising lead toward developing effective ABCB1 inhibitors to treat drug-resistant cancers.

4.
Am J Ophthalmol ; 266: 218-226, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777101

RESUMO

PURPOSE: The identification of infectious etiologies is important in the management of uveitis. Ocular fluid testing is required, but multiplex testing faces challenges due to the limited volume sampled. The determination of antibody repertoire of aqueous humor (AH) is not possible with conventional assays. We investigated the use of a highly multiplexable serological assay VirScan, a Phage ImmunoPrecipitation Sequencing (PhIP-Seq) library derived from the sequences of more than 200 viruses to determine the antibody composition of AH in patients with uveitis. DESIGN: Prospective, case control study. METHODS: We analyzed the paired AH and plasma samples of 11 immunocompetent patients with active polymerase chain reaction-positive cytomegalovirus (CMV) anterior uveitis and the AH of 34 control patients undergoing cataract surgery with no known uveitis in an institutional practice. The samples were tested using VirScan PhIP-Seq, and the entire pan-viral antibody repertoire was determined using peptide tile ranking by normalized counts to identify significant antibodies enrichment against all viruses with human tropism. RESULTS: Significant enrichment of antibodies to Herpesviridae, Picornavirdae, and Paramyxoviridae was detectable in 20 µL of AH samples from patients with CMV uveitis and controls. Patients with CMV uveitis had relative enrichment of anti-CMV antibodies in AH compared with their plasma. Epitope-level mapping identified significant enrichment of antibodies against CMV tegument protein pp150 (P = 1.5e-06) and envelope glycoprotein B (P = .0045) in the AH compared with controls. CONCLUSIONS: Our proof-of-concept study not only sheds light on the antibody repertoire of AH but also expands the utility of PhIP-Seq to future studies to detect antibodies in AH in the study of inflammatory eye diseases.

5.
Immunol Cell Biol ; 101(10): 975-983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670482

RESUMO

Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Formação de Anticorpos , ChAdOx1 nCoV-19 , Vacinação , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G , Anticorpos Neutralizantes
6.
Sci Rep ; 13(1): 12484, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528224

RESUMO

The COVID-19 pandemic has sickened millions, cost lives and has devastated the global economy. Various animal models for experimental infection with SARS-CoV-2 have played a key role in many aspects of COVID-19 research. Here, we describe a humanized hACE2 (adenovirus expressing hACE2) NOD-SCID IL2Rγ-/- (NIKO) mouse model and compare infection with ancestral and mutant (SARS-CoV-2-∆382) strains of SARS-CoV-2. Immune cell infiltration, inflammation, lung damage and pro-inflammatory cytokines and chemokines was observed in humanized hACE2 NIKO mice. Humanized hACE2 NIKO mice infected with the ancestral and mutant SARS-CoV-2 strain had lung inflammation and production of pro-inflammatory cytokines and chemokines. This model can aid in examining the pathological basis of SARS-CoV-2 infection in a human immune environment and evaluation of therapeutic interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pandemias , Modelos Animais de Doenças , Citocinas , Camundongos Transgênicos , Pulmão
7.
Rheumatology (Oxford) ; 62(9): 3101-3109, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661304

RESUMO

OBJECTIVES: To evaluate the humoral immunogenicity for 6 months after the two-dose coronavirus disease 2019 (COVID-19) mRNA vaccination in adolescents and young adults (AYAs) with childhood-onset rheumatic diseases (cRDs). METHODS: This monocentric observational study was conducted between August 2020 and March 2022. Humoral immunogenicity was assessed at 2-3 weeks after first vaccine dose and 1, 3 and 6 months after the second dose by the cPass™ severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralization antibody (nAb) assay. An inhibition signal of ≥30% defined the seroconversion threshold and the readings were calibrated against the World Health Organization International Standard for SARS-CoV-2 antibodies. RESULTS. ONE HUNDRED AND SIXTY-NINE: AYAs with cRDs were recruited [median age 16.8 years (interquartile range, IQR 14.7-19.5), 52% female, 72% Chinese]. JIA (58%) and SLE (18%) comprised the major diagnoses. After second vaccine dose, 99% seroconverted with a median nAb titre of 1779.8 IU/ml (IQR 882.8-2541.9), declining to 935.6 IU/ml (IQR 261.0-1514.9) and 683.2 IU/ml (IQR 163.5-1400.5) at the 3- and 6-month timepoints, respectively. The diagnosis of JIA [odds ratio (OR) 10.1, 95% CI 1.8-58.4, P = 0.010] and treatment with anti-TNF-α (aTNF) (OR 10.1, 95% CI 1.5-70.0, P = 0.019) were independently associated with a >50% drop of nAb titres at 6 months. Withholding MTX or MMF did not affect the vaccine response or decay rate. The COVID-19 breakthrough infection was estimated at 18.2 cases/1000 patient-months with no clinical risk factors identified. CONCLUSION: Over half of AYAs with cRDs had a significant drop in SARS-CoV-2 nAb at 6-month despite an initial robust humoral response. JIA and aTNF usage are predictors of a faster decay rate.


Assuntos
COVID-19 , Doenças Reumáticas , Criança , Adolescente , Feminino , Humanos , Adulto Jovem , Masculino , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Inibidores do Fator de Necrose Tumoral , SARS-CoV-2 , Anticorpos Antivirais , Doenças Reumáticas/tratamento farmacológico
8.
J Infect Dis ; 227(2): 211-220, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975942

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may be associated with worse clinical outcomes in people with human immunodeficiency virus (HIV) (PWH). We report anti-SARS-CoV-2 antibody responses in patients hospitalized with coronavirus disease 2019 in Durban, South Africa, during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS: Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS: SARS-CoV-2-specific antibody concentrations were generally lower in viremic PWH than in virologically suppressed PWH and HIV-negative participants, and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and antiretroviral therapy-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 cell counts <500/µL were associated with lower frequencies of immunoglobulin G and A seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS: HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.


Assuntos
COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , HIV , Viremia , África do Sul/epidemiologia , Anticorpos Antivirais , Infecções por HIV/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Testes de Neutralização
9.
Nat Microbiol ; 7(11): 1756-1761, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195753

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral , Anticorpos Antivirais , Glicoproteínas de Membrana
10.
J Virol ; 96(20): e0115222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173189

RESUMO

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Assuntos
Quirópteros , Viroses , Vírus , Humanos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antivirais , Receptores Toll-Like
12.
J Am Assoc Lab Anim Sci ; 61(4): 344-352, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688608

RESUMO

Bats are known natural reservoirs of several highly pathogenic zoonotic viruses, including Hendra virus, Nipah virus, rabies virus, SARS-like coronaviruses, and suspected ancestral reservoirs of SARS-CoV-2 responsible for the ongoing COVID-19 pandemic. The capacity to survive infections of highly pathogenic agents without severe disease, together with many other unique features, makes bats an ideal animal model for studying the regulation of infection, cancer, and longevity, which is likely to translate into human health outcomes. A key factor that limits bat research is lack of breeding bat colonies. To address this need, a captive bat colony was established in Singapore from 19 wild-caught local cave nectar bats. The bats were screened for specific pathogens before the start of captive breeding. Custom-made cages and an optimized diet inclusive of Wombaroo dietary formula, liquid diet, and supplement of fruits enabled the bats to breed prolifically in our facility. Cages are washed daily and disinfected once every fortnight. Bats are observed daily to detect any sick bat or abnormal behavior. In addition, bats undergo a thorough health check once every 3 to 4 mo to check on their overall wellbeing, perform sampling, and document any potential pregnancy. The current colony houses over 80 bats that are successfully breeding, providing a valuable resource for research in Singapore and overseas.


Assuntos
COVID-19 , Quirópteros , Animais , Cruzamento , Reservatórios de Doenças , Humanos , Pandemias , Filogenia , Néctar de Plantas , SARS-CoV-2 , Singapura
13.
mBio ; 13(1): e0343621, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038898

RESUMO

The dynamics of SARS-CoV-2 infection in COVID-19 patients are highly variable, with a subset of patients demonstrating prolonged virus shedding, which poses a significant challenge for disease management and transmission control. In this study, the long-term dynamics of SARS-CoV-2 infection were investigated using a human well-differentiated nasal epithelial cell (NEC) model of infection. NECs were observed to release SARS-CoV-2 virus onto the apical surface for up to 28 days postinfection (dpi), further corroborated by viral antigen staining. Single-cell transcriptome sequencing (sc-seq) was utilized to explore the host response from infected NECs after short-term (3-dpi) and long-term (28-dpi) infection. We identified a unique population of cells harboring high viral loads present at both 3 and 28 dpi, characterized by expression of cell stress-related genes DDIT3 and ATF3 and enriched for genes involved in tumor necrosis factor alpha (TNF-α) signaling and apoptosis. Remarkably, this sc-seq analysis revealed an antiviral gene signature within all NEC cell types even at 28 dpi. We demonstrate increased replication of basal cells, absence of widespread cell death within the epithelial monolayer, and the ability of SARS-CoV-2 to replicate despite a continuous interferon response as factors likely contributing to SARS-CoV-2 persistence. This study provides a model system for development of therapeutics aimed at improving viral clearance in immunocompromised patients and implies a crucial role for immune cells in mediating viral clearance from infected epithelia. IMPORTANCE Increasing medical attention has been drawn to the persistence of symptoms (long-COVID syndrome) or live virus shedding from subsets of COVID-19 patients weeks to months after the initial onset of symptoms. In vitro approaches to model viral or symptom persistence are needed to fully dissect the complex and likely varied mechanisms underlying these clinical observations. We show that in vitro differentiated human NECs are persistently infected with SARS-CoV-2 for up to 28 dpi. This viral replication occurred despite the presence of an antiviral gene signature across all NEC cell types even at 28 dpi. This indicates that epithelial cell intrinsic antiviral responses are insufficient for the clearance of SARS-CoV-2, implying an essential role for tissue-resident and infiltrating immune cells for eventual viral clearance from infected airway tissue in COVID-19 patients.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Células Epiteliais , Antivirais
14.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34313734

RESUMO

Bats are attracting the greatest attention recently as a putative reservoir of SARS-CoV-2 responsible for the COVID-19 pandemic. However, less known to the public, bats also have several unique traits of high value to human health. The lessons we learn from bats can potentially help us fight many human diseases, including infection, aging, and cancer.


Assuntos
Quirópteros/fisiologia , Quirópteros/virologia , Resistência à Doença/fisiologia , Animais , Animais de Laboratório , COVID-19 , Modelos Animais de Doenças , Humanos
15.
Emerg Microbes Infect ; 10(1): 1457-1470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34120576

RESUMO

Zika virus (ZIKV) is an emerging arbovirus with recent global expansion. Historically, ZIKV infections with Asian lineages have been associated with mild disease such as rash and fever. However, recent Asian sub-lineages have caused outbreaks in the South Pacific and Latin America with increased prevalence of neurological disorders in infants and adults. Asian sub-lineage differences may partially explain the range of disease severity observed. However, the effect of Asian sub-lineage differences on pathogenesis remains poorly characterized. Current study conducts a head-to-head comparison of three Asian sub-lineages that are representative of the circulating ancestral mild Asian strain (ZIKV-SG), the 2007 epidemic French Polynesian strain (ZIKV-FP), and the 2013 epidemic Brazil strain (ZIKV-Brazil) in adult Cynomolgus macaques. Animals infected intervenously or subcutaneously with either of the three clinical isolates showed sub-lineage-specific differences in viral pathogenesis, early innate immune responses and systemic inflammation. Despite the lack of neurological symptoms in infected animals, the epidemiologically neurotropic ZIKV sub-lineages (ZIKV-Brazil and/or ZIKV-FP) were associated with more sustained viral replication, higher systemic inflammation (i.e. higher levels of TNFα, MCP-1, IL15 and G-CSF) and greater percentage of CD14+ monocytes and dendritic cells in blood. Multidimensional analysis showed clustering of ZIKV-SG away from ZIKV-Brazil and ZIKV-FP, further confirming sub-lineage differences in the measured parameters. These findings highlight greater systemic inflammation and monocyte recruitment as possible risk factors of adult ZIKV disease observed during the 2007 FP and 2013 Brazil epidemics. Future studies should explore the use of anti-inflammatory therapeutics as early treatment to prevent ZIKV-associated disease in adults.


Assuntos
Imunidade Inata , Infecção por Zika virus/imunologia , Zika virus/classificação , Zika virus/imunologia , Zika virus/patogenicidade , Adulto , Animais , Ásia , Brasil , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Monócitos/imunologia , Especificidade da Espécie , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Virulência , Replicação Viral , Zika virus/genética , Infecção por Zika virus/virologia
16.
Nature ; 589(7842): 363-370, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473223

RESUMO

There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)-as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats-the only flying mammal-display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Reservatórios de Doenças/veterinária , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão , Animais , Doenças Assintomáticas , Reservatórios de Doenças/virologia , Evolução Molecular , Humanos , Tolerância Imunológica , Zoonoses Virais/virologia
17.
Sci Rep ; 11(1): 2062, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479465

RESUMO

In order to support vaccine development, and to aid convalescent plasma therapy, it would be important to understand the kinetics, timing and persistence of SARS-CoV-2 neutralizing antibodies (NAbs), and their association with clinical disease severity. Therefore, we used a surrogate viral neutralization test to evaluate their levels in patients with varying severity of illness, in those with prolonged shedding and those with mild/asymptomatic illness at various time points. Patients with severe or moderate COVID-19 illness had earlier appearance of NAbs at higher levels compared to those with mild or asymptomatic illness. Furthermore, those who had prolonged shedding of the virus, had NAbs appearing faster and at higher levels than those who cleared the virus earlier. During the first week of illness the NAb levels of those with mild illness was significantly less (p = 0.01), compared to those with moderate and severe illness. At the end of 4 weeks (28 days), although 89% had NAbs, 38/76 (50%) in those with > 90 days had a negative result for the presence of NAbs. The Ab levels significantly declined during convalescence (> 90 days since onset of illness), compared to 4 to 8 weeks since onset of illness. Our data show that high levels of NAbs during early illness associated with clinical disease severity and that these antibodies declined in 50% of individuals after 3 months since onset of illness.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Imunidade Adaptativa/imunologia , Adulto , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/terapia , Convalescença , Feminino , Humanos , Imunização Passiva/métodos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Índice de Gravidade de Doença , Sri Lanka/epidemiologia , Soroterapia para COVID-19
18.
PLoS Pathog ; 16(12): e1009130, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284849

RESUMO

The novel coronavirus SARS-CoV-2 is the causative agent of Coronavirus Disease 2019 (COVID-19), a global healthcare and economic catastrophe. Understanding of the host immune response to SARS-CoV-2 is still in its infancy. A 382-nt deletion strain lacking ORF8 (Δ382 herein) was isolated in Singapore in March 2020. Infection with Δ382 was associated with less severe disease in patients, compared to infection with wild-type SARS-CoV-2. Here, we established Nasal Epithelial cells (NECs) differentiated from healthy nasal-tissue derived stem cells as a suitable model for the ex-vivo study of SARS-CoV-2 mediated pathogenesis. Infection of NECs with either SARS-CoV-2 or Δ382 resulted in virus particles released exclusively from the apical side, with similar replication kinetics. Screening of a panel of 49 cytokines for basolateral secretion from infected NECs identified CXCL10 as the only cytokine significantly induced upon infection, at comparable levels in both wild-type and Δ382 infected cells. Transcriptome analysis revealed the temporal up-regulation of distinct gene subsets during infection, with anti-viral signaling pathways only detected at late time-points (72 hours post-infection, hpi). This immune response to SARS-CoV-2 was significantly attenuated when compared to infection with an influenza strain, H3N2, which elicited an inflammatory response within 8 hpi, and a greater magnitude of anti-viral gene up-regulation at late time-points. Remarkably, Δ382 induced a host transcriptional response nearly identical to that of wild-type SARS-CoV-2 at every post-infection time-point examined. In accordance with previous results, Δ382 infected cells showed an absence of transcripts mapping to ORF8, and conserved expression of other SARS-CoV-2 genes. Our findings shed light on the airway epithelial response to SARS-CoV-2 infection, and demonstrate a non-essential role for ORF8 in modulating host gene expression and cytokine production from infected cells.


Assuntos
COVID-19/virologia , Mucosa Nasal/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Proteínas Virais/genética , Quimiocina CXCL10/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Cinética , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Transcriptoma , Proteínas Virais/imunologia , Replicação Viral/fisiologia
19.
Proc Natl Acad Sci U S A ; 117(46): 28939-28949, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33106404

RESUMO

Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1ß and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1ß activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1ß cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1ß, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration.


Assuntos
Caspase 1/metabolismo , Quirópteros/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Animais , Quirópteros/genética , Citocinas/metabolismo , DNA , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Piroptose , Transdução de Sinais
20.
mBio ; 11(5)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934084

RESUMO

Bats are primary reservoirs for multiple lethal human viruses, such as Ebola, Nipah, Hendra, rabies, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and, most recently, SARS-CoV-2. The innate immune systems of these immensely abundant, anciently diverged mammals remain insufficiently characterized. While bat genomes contain many endogenous retroviral elements indicative of past exogenous infections, little is known about restrictions to extant retroviruses. Here, we describe a major postentry restriction in cells of the yinpterochiropteran bat Pteropus alecto Primate lentiviruses (HIV-1, SIVmac) were potently blocked at early life cycle steps, with up to 1,000-fold decreases in infectivity. The block was specific, because nonprimate lentiviruses such as equine infectious anemia virus and feline immunodeficiency virus were unimpaired, as were foamy retroviruses. Interspecies heterokaryons demonstrated a dominant block consistent with restriction of incoming viruses. Several features suggested potential TRIM5 (tripartite motif 5) or myxovirus resistance protein 2 (MX2) protein restriction, including postentry action, cyclosporine sensitivity, and reversal by capsid cyclophilin A (CypA) binding loop mutations. Viral nuclear import was significantly reduced, and this deficit was substantially rescued by cyclosporine treatment. However, saturation with HIV-1 virus-like particles did not relieve the restriction at all. P. alecto TRIM5 was inactive against HIV-1 although it blocked the gammaretrovirus N-tropic murine leukemia virus. Despite major divergence in a critical N-terminal motif required for human MX2 activity, P. alecto MX2 had anti-HIV activity. However, this did not quantitatively account for the restriction and was independent of and synergistic with an additional CypA-dependent restriction. These results reveal a novel, specific restriction to primate lentiviruses in the Pteropodidae and advance understanding of bat innate immunity.IMPORTANCE The COVID-19 pandemic suggests that bat innate immune systems are insufficiently characterized relative to the medical importance of these animals. Retroviruses, e.g., HIV-1, can be severe pathogens when they cross species barriers, and bat restrictions corresponding to retroviruses are comparatively unstudied. Here, we compared the abilities of retroviruses from three genera (Lentivirus, Gammaretrovirus, and Spumavirus) to infect cells of the large fruit-eating bat P. alecto and other mammals. We identified a major, specific postentry restriction to primate lentiviruses. HIV-1 and SIVmac are potently blocked at early life cycle steps, but nonprimate lentiviruses and foamy retroviruses are entirely unrestricted. Despite acting postentry and in a CypA-dependent manner with features reminiscent of antiretroviral factors from other mammals, this restriction was not saturable with virus-like particles and was independent of P. alecto TRIM5, TRIM21, TRIM22, TRIM34, and MX2. These results identify a novel restriction and highlight cyclophilin-capsid interactions as ancient species-specific determinants of retroviral infection.


Assuntos
Quirópteros/imunologia , Gammaretrovirus/imunologia , Imunidade Inata/imunologia , Lentivirus de Primatas/imunologia , Spumavirus/imunologia , Células 3T3 , Animais , Aotidae , Gatos , Linhagem Celular , Quirópteros/virologia , Ciclofilina A/metabolismo , Furões , Gammaretrovirus/crescimento & desenvolvimento , Células HEK293 , Humanos , Lentivirus de Primatas/crescimento & desenvolvimento , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Spumavirus/crescimento & desenvolvimento , Proteínas com Motivo Tripartido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA