Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(2): 675-684, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908068

RESUMO

Exploiting economic, efficient and durable non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is promising, but still faces enormous challenges. Herein, the strategy of doping a metal boride with a rare earth metal oxide has been explored to develop a highly efficient bifunctional electrocatalyst. The novel electrocatalyst CeOx-NiB consists of CeOx-doped NiB supported on nickel foam, and was fabricated by a one-step mild electroless plating reaction. Remarkably, the CeOx-NiB@NF electrode delivers a current density of 10 mA cm-2 at overpotentials of only 19 mV and 274 mV for the HER and OER, respectively. Two-electrode electrolyzers with the CeOx-NiB@NF electrode require only 1.424 V to deliver 10 mA cm-2 for overall water splitting in 1.0 M KOH, outperforming the Pt-C/NF∥IrO2/NF electrolyzer. Meanwhile, the electrode also has good stability (can work for 100 hours at 10 mA cm-2) and industrial-grade current density. This work provides a new idea for the development of efficient and durable non-precious metal catalysts.

2.
Waste Manag ; 124: 8-16, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592321

RESUMO

An efficient, microwave-assisted chemical recovery approach for epoxy resin and glass fiber from non-metallic components (NMC) in waste printed circuit boards (WPCBs) for resource reutilization was developed in this research. HNO3 was selected as the chemical reagent because epoxy resin has low corrosion resistance to HNO3. The influence of reaction parameters such as reaction time, temperature, concentration of HNO3, liquid-solid ratio, and power of the microwave synthesizer on the separation efficiency of NMC (epoxy resin and glass fiber) and the reaction mechanism were investigated. The physical and chemical properties of NMC, reaction solvent, and decomposed products were analyzed using energy dispersive X-ray Spectroscopy (SEM-EDX) and Fourier transform infrared spectroscopy (FT-IR). The results showed that up to 88.42% of epoxy resin and glass fiber ((5 g) 10 mL/g) could be separated under the action of 300 W microwave power at 95 ℃ for 12 h and a HNO3 concentration of 7 mol/L. During the reaction, C-N bonds formed by the crosslinking agent and the three-dimensional network structure of the thermosetting epoxy resin were destroyed. The carbon chain structure and chemical properties of epoxy resin did not change significantly and the functional groups of ethyl acetate maintained the chemical structure before and after the reaction. This uncomplicated and efficient inorganic acid chemical microwave-assisted process holds promise for use as a feasible recovery technology for epoxy resin and glass fibers in NMC. The proposed process is particularly appealing because of its high selectivity, considerable economic advantages, and environmental benefits.


Assuntos
Resíduo Eletrônico , Resinas Epóxi , Vidro , Micro-Ondas , Reciclagem , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Waste Manag ; 123: 60-68, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561771

RESUMO

Non-metallic components (NMC) in waste printed circuit boards (WPCBs) are made of the thermosetting epoxy resin and glass fiber, which has been a research concern in the waste recycling area. The recycling of thermosetting epoxy resin is a serious challenge due to their permanent cross-linked structure. An efficient approach to chemical recycling of epoxy resin for resource reutilization was developed in this research. ZnCl2/CH3COOH aqueous solution was selected as catalysts system to decompose epoxy resin under a mild reaction condition. The influence of reaction parameters such as reaction temperature, time, liquid-solid ratio and ZnCl2 amount on the decomposition efficiency of epoxy resin and reaction mechanism were investigated. The physical and chemical properties of NMC, reaction solvent and decomposed products were analyzed using scanning electron microscope(SEM), Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectrometry (GC-MS). Results showed that up to 81.85% of epoxy resin could be dissolved by using a temperature of 190 °C during 8 h with a mixture of acetic acid (15 wt%): ZnCl2 (5 g) 20 mL/g. Incompletely coordinated zinc ions enables the cleavage of CN, CBr and CO bonds in the thermosetting brominated epoxy resin, which was mainly converted to phenol, 2-Bromophenol and 2, 4-Dibromophenol with high resource value. And the functional groups of ethyl acetate and acetic acid maintained chemical structure before and after reaction. This research provided a practical approach to the dissolution and reutilization of NMC in WPCBs.


Assuntos
Cloretos , Resíduo Eletrônico , Pós , Reciclagem , Solubilidade , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA