Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Hazard Mater ; 476: 135007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944994

RESUMO

Accumulation of cadmium (Cd) in rice is not only harmful to the growth of plants but also poses a threat to human health. Exposure to Cd triggers unfolded protein response (UPR) within cells, a process that is still not completely understood. The study demonstrated that the lack of OsbZIP39, an essential endoplasmic reticulum (ER)-resident regulator of the UPR, resulted in decreased Cd intake and reduced Cd levels in the roots, stems, and grains of rice. Upon exposure to Cd stress, GFP-OsbZIP39 translocated from ER to nucleus, initiating UPR. Further investigation revealed that Cd treatment caused changes in sphingolipid levels in the membrane, influencing the localization and activation of OsbZIP39. Yeast one-hybrid and dual-LUC assays were conducted to validate the interaction between activated OsbZIP39 and the promoter of the defensin-like gene OsCAL2, resulting in an increase in its expression. Different variations were identified in the coding region of OsbZIP39, which may explain the varying levels of Cd accumulation observed in the indica and japonica subspecies. Under Cd treatment, OsbZIP39ind exhibited a more significant enhancement in the transcription of OsCAL2 compared to OsbZIP39jap. Our data suggest that OsbZIP39 positively regulates Cd uptake in rice, offering an encouraging objective for the cultivation of low-Cd rice.

2.
J Am Chem Soc ; 146(23): 15815-15824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832857

RESUMO

Ribonuclease targeting chimera (RIBOTAC) represents an emerging strategy for targeted therapy. However, RIBOTAC that is selectively activated by bio-orthogonal or cell-specific triggers has not been explored. We developed a strategy of inducible RIBOTAC (iRIBOTAC) that enables on-demand degradation of G-quadruplex (G4) RNAs for precision cancer therapy. iRIBOTAC is designed by coupling an RNA G4 binder with a caged ribonuclease recruiter, which can be decaged by a bio-orthogonal reaction, tumor-specific enzyme, or metabolite. A bivalent G4 binder is engineered by conjugating a near-infrared (NIR) fluorescence G4 ligand to a noncompetitive G4 ligand, conferring fluorescence activation on binding G4s with synergistically enhanced affinity. iRIBOTAC is demonstrated to greatly knockdown G4 RNAs upon activation under bio-orthogonal or cell-specific stimulus, with dysregulation of gene expressions involving cell killing, channel regulator activity, and metabolism as revealed by RNA sequencing. This strategy also shows a crucial effect on cell fate with remarkable biochemical hallmarks of apoptosis. Mice model studies demonstrate that iRIBOTAC allows selective imaging and growth suppression of tumors with bio-orthogonal and tumor-specific controls, highlighting G4 RNA targeting and inducible silencing as a valuable RIBOTAC paradigm for cancer therapy.


Assuntos
Quadruplex G , RNA Mensageiro , Ribonucleases , Humanos , Animais , Camundongos , Ribonucleases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inativação Gênica , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/genética
3.
Biomed Pharmacother ; 175: 116665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701564

RESUMO

Opioid receptor agonists are often used when cancer patients undergo surgery or analgesic treatment. As analgesics in clinical care, opioids can provide intraoperative or to chronic cancer pain relief. Immune function plays an important role in anti-cancer therapy, with cellular immunity, comprised principally of T-lymphocytes and natural killer cells, representing the primary anti-cancer immune response. However, it remains unclear whether immune function is further affected with the use of opioids in already immunocompromised cancer patients. This article provides a review of the effects of commonly used clinical opioids, including morphine, oxycodone, fentanyl and tramadol, on immune function in cancer patients. It provides a summary of current evidence regarding the immunomodulatory effects of opioids in the cancer setting and mechanisms underlying these interactions.


Assuntos
Analgésicos Opioides , Neoplasias , Humanos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/farmacologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/imunologia , Animais , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos
4.
Iran J Basic Med Sci ; 27(6): 775-779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645502

RESUMO

Objectives: Breast cancer is an important women's malignancy with high cancer-related deaths worldwide. Drug resistance lowers the treatment efficacy in this malignancy. This study aimed to explore the underlying mechanisms of histone deacetylase (HDAC) inhibitor trichostatin A (TSA) to overcome resistance to tamoxifen in breast cancer cells. Materials and Methods: Tamoxifen-resistance in MCF-7 breast cancer cells was simulated. MTT assay was used to detect the cytotoxic effects of HDAC inhibitor and PI3K inhibitor on the cancer cells. Trans-well assay was applied to evaluate the invasion and migration of the treated cancer cells. Flow cytometer assay was also applied to evaluate cell cycle phases in the treated cancer cells. Finally, expression of vascular endothelial growth factor (VEGF), E-cadherin, Vimentin, phosphorylated phosphatidylinositol kinase (p-PI3k), phosphorylated protein kinase B (p-AKT), and phosphorylated mammalian target protein of rapamycin (p-mTOR) was evaluated by western blotting. Results: The obtained results indicated that HDAC inhibitor treatments significantly decreased viability, migration, and invasion in the cancer cells. Furthermore, the frequency of the treated cancer cells significantly increased in the S phase as well as significantly decreasing in the G2/M phase of the cell cycle. Moreover, HDAC inhibitor modified levels of VEGF, E-cadherin, Vimentin, p-PI3k, p-AKT, and p-mTOR proteins. However, HDAC inhibitor combined with PI3K inhibitor exerts more profound effects on the cancer cells as compared to HDAC inhibitor monotherapy. Conclusion: HDAC inhibitors inhibited the survival of breast cancer drug-resistant cells, invasion, migration, and angiogenesis by inhibiting the PI3k/Akt/mTOR signaling pathway.

5.
Fitoterapia ; 176: 105981, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685513

RESUMO

An investigation of EtOAc extract from the roots of Paeonia lactiflora yielded three new 30-noroleanane triterpenoids paeonenoides L-N (1-3) and one new oleanane triterpenoid paeonenoide O (4) together with 7 known compounds (5-11). Extensive spectrographic experiments were applied to identify the structures of 1-4, and their absolute configurations were unambiguously determined by theoretical calculations of ECD spectra, as well as the single-crystal X-ray diffraction analysis. Compounds 8, 9 and 10 were isolated from the Paeonia genus for the first time. Moreover, compounds 8, 9 and 11 showed inhibitory activities against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages with the IC50 values of 72. 17 ± 4.74, 30.02 ± 2.03 and 28.34 ± 1.85 µM, respectively.


Assuntos
Óxido Nítrico , Ácido Oleanólico , Paeonia , Compostos Fitoquímicos , Raízes de Plantas , Raízes de Plantas/química , Paeonia/química , Camundongos , Animais , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/química , Células RAW 264.7 , Estrutura Molecular , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/química , China , Macrófagos/efeitos dos fármacos
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 395-401, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660842

RESUMO

OBJECTIVE: To investigate the correlation of miR-155 expression with drug sensitivity of FLT3-ITD+ acute myeloid leukemia (AML) cell line and its potential regulatory mechanism. METHODS: By knocking out miR-155 gene in FLT3-ITD+ AML cell line MV411 through CRISPR/Cas9 gene-editing technology, monoclonal cells were screened. The genotype of these monoclonal cells was validated by PCR and Sanger sequencing. The expression of mature miRNA was measured by RT-qPCR. The treatment response of doxorubicin, quizartinib and midostaurin were measured by MTT assay and IC50 of these drugs were calculated to identify the sensitivity. Transcriptome sequencing was used to analyze change of mRNA level in MV411 cells after miR-155 knockout, gene set enrichment analysis to analyze change of signaling pathway, and Western blot to verify expressions of key molecules in signaling pathway. RESULTS: Four heterozygotes with gene knockout and one heterozygote with gene insertion were obtained through PCR screening and Sanger sequencing. RT-qPCR results showed that the expression of mature miR-155 in the monoclonal cells was significantly lower than wild-type clones. MTT results showed that the sensitivity of MV411 cells to various anti FLT3-ITD+ AML drugs increased significantly after miR-155 knockout compared with wild-type clones. RNA sequencing showed that the mTOR signaling pathway and Wnt signaling pathway were inhibited after miR-155 knockout. Western blot showed that the expressions of key molecules p-mTOR, Wnt5α and ß-catenin in signaling pathway were down-regulated. CONCLUSION: Drug sensitivity of MV411 cells to doxorubicin, quizartinib and midostaurin can be enhanced significantly after miR-155 knockout, which is related to the inhibition of multiple signaling pathways including mTOR and Wnt signaling pathways.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Compostos de Fenilureia , Estaurosporina/análogos & derivados , Tirosina Quinase 3 Semelhante a fms , MicroRNAs/genética , Humanos , Leucemia Mieloide Aguda/genética , Tirosina Quinase 3 Semelhante a fms/genética , Linhagem Celular Tumoral , Transdução de Sinais , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Benzotiazóis/farmacologia , Estaurosporina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt
7.
Front Oncol ; 13: 1156763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854679

RESUMO

Background: Inflammatory cell death is a form of programmed cell death (PCD) that induces inflammatory mediators during the process. The production of inflammatory mediators during cell death is beneficial in standard cancer therapies as it can break the immune silence in cancers and induce anticancer immunity. Photodynamic therapy (PDT) is a cancer therapy with photosensitizer molecules and light sources to destroy cancer cells, which is currently used for treating different types of cancers in clinical settings. In this study, we investigated if PDT using 5-aminolevulinic (5-ALA-PDT) causes inflammatory cell death and, subsequently, increases the immunogenicity of cancer cells. Methods: Mouse breast cancer (4T1) and human colon cancer (DLD-1) cells were treated with 5-ALA for 4 hours and then irradiated with a light source. PCD induction was measured by western blot analysis and FACS. Morphological changes were determined by transmission electron microscopy (TEM). BALB/c mice were injected with cell-free media, supernatant of freeze/thaw cells or supernatant of PDT cells intramuscular every week for 4 weeks and then challenged with 4T1 cells at the right hind flank of BALB/c. Tumor growth was monitored for 12 days. Results: We found that 5-ALA-PDT induces inflammatory cell death, but not apoptosis, in 4T1 cells and DLD-1 cells in vitro. Moreover, when mice were pretreated with 5-ALA-PDT culture supernatant, the growth of 4T1 tumors was significantly suppressed compared to those pretreated with freeze and thaw (F/T) 4T1 culture supernatant. Conclusion: These results indicate that 5-ALA-PDT induces inflammatory cell death which promotes anticancer immunity in vivo.

8.
Sci Adv ; 9(33): eadg7112, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595040

RESUMO

FOXA1, a transcription factor involved in epigenetic reprogramming, is crucial for breast cancer progression. However, the mechanisms by which FOXA1 achieves its oncogenic functions remain elusive. Here, we demonstrate that the O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) of FOXA1 promotes breast cancer metastasis by orchestrating the transcription of numerous metastasis regulators. O-GlcNAcylation at Thr432, Ser441, and Ser443 regulates the stability of FOXA1 and promotes its assembly with chromatin. O-GlcNAcylation shapes the FOXA1 interactome, especially triggering the recruitment of the transcriptional repressor methyl-CpG binding protein 2 and consequently stimulating FOXA1 chromatin-binding sites to switch to chromatin loci of adhesion-related genes, including EPB41L3 and COL9A2. Site-specific depletion of O-GlcNAcylation on FOXA1 affects the expression of various downstream genes and thus inhibits breast cancer proliferation and metastasis both in vitro and in vivo. Our data establish the importance of aberrant FOXA1 O-GlcNAcylation in breast cancer progression and indicate that targeting O-GlcNAcylation is a therapeutic strategy for metastatic breast cancer.


Assuntos
Neoplasias da Mama , Cromatina , Humanos , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Epigenômica , Proteínas dos Microfilamentos
9.
Clin Transl Med ; 13(8): e1381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37605313

RESUMO

BACKGROUND: Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS: The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS: Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110ß, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION: Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.


Assuntos
Lesão Pulmonar , Pneumonia , Telócitos , Animais , Camundongos , Osteopontina/genética , Fosfatidilinositol 3-Quinases/genética , Lipopolissacarídeos , Pneumonia/genética , Inflamação/induzido quimicamente , Inflamação/genética , Pulmão
10.
Cell Oncol (Dordr) ; 46(6): 1709-1724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37486460

RESUMO

PURPOSE: Most patients with acute lymphoblastic leukemia (ALL) are treated with chemotherapy as primary care. Although the treatment response is usually positive, resistance and relapse often occur via unknown mechanisms. The purpose of this study was to identify factors associated with chemotherapy resistance in ALL. Here, we present clinical and experimental evidence that overexpression of nucleolin (NCL), a multifunctional nucleolar protein, is linked to drug resistance in ALL. METHODS: NCL mRNA and protein levels were compared between cell lines and patient samples using qRT-PCR and immunoblotting. NCL mRNA levels were compared between patients of different disease stages from our clinic patients' specimens and publicly available ALL patient datasets. Cells and patient-derived xenograft mouse experiments were performed to assess the effect of NCL inhibition on ALL chemotherapy effectiveness. RESULTS: Analysis of patient specimens, and publicly available RNA-sequencing datasets revealed a strong correlation between the abundance of NCL and disease relapse or poor survival in B-ALL. Altering NCL expression results in changes in drug sensitivity in ALL cell lines. High levels of NCL upregulated components of the ATP-binding cassette transporters via activation of the ERK pathway, resulting in a decrease in drug accumulation inside the cells. Targeting NCL with AS1411, an NCL-binding oligonucleotide aptamer, significantly increased the sensitivity of ALL cell lines and cells/patient-derived ALL xenograft mice to chemotherapeutic drugs and prolonged mouse survival. CONCLUSION: Our results highlight NCL as a prognostic marker in B-ALL and a potential therapeutic target to combat chemotherapy resistance in ALL.


Assuntos
Fosfoproteínas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animais , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recidiva , Nucleolina
11.
J Clin Neurosci ; 114: 32-37, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290140

RESUMO

Spine surgeons should weigh the risks of anticoagulants against their benefits in preventing deep venous thrombosis (DVT), as they may increase the risk of bleeding. Spinal metastasis patients undergoing decompression with fixation are at a high risk for DVT, which may occur preoperatively. Therefore, anticoagulants should be administered preoperatively. This study aimed to evaluate the safety of the administration of anticoagulants in treating spinal metastasis patients with preoperative DVT. Therefore, we prospectively investigated the prevalence of DVT in these patients. Patients who were diagnosed with preoperative DVT were included in an anticoagulant group. Subcutaneous low-molecular-weight heparin (LMWH) was administered. Patients without DVT were included in a non-anticoagulant group. Data on patient information, clinical parameters, blood test results, and bleeding complications were also collected. Moreover, the safety of anticoagulants was analyzed. The prevalence of preoperative DVT was 8.0%. None of the patients developed pulmonary thromboembolism. Furthermore, no significant differences in blood loss, drainage volume, hemoglobin levels, number of transfusions, or preoperative trans-catheter arterial embolization were observed between the two groups. None of the patients developed major bleeding. However, two patients experienced wound hematoma and one experienced incisional bleeding in the non-anticoagulant group. Therefore, LMWH is safe for spinal metastasis patients. Future randomized controlled trials should be conducted to evaluate the validity of perioperative prophylactic anticoagulation therapy in these patients.


Assuntos
Neoplasias da Coluna Vertebral , Trombose Venosa , Humanos , Heparina de Baixo Peso Molecular/efeitos adversos , Estudos Prospectivos , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/cirurgia , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Trombose Venosa/epidemiologia , Trombose Venosa/tratamento farmacológico , Heparina/uso terapêutico
12.
Oncogene ; 42(30): 2329-2346, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37353617

RESUMO

Reversible and dynamic O-GlcNAcylation regulates vast networks of highly coordinated cellular and nuclear processes. Although dysregulation of the sole enzyme O-GlcNAc transferase (OGT) was shown to be associated with the progression of hepatocellular carcinoma (HCC), the mechanisms by which OGT controls the cis-regulatory elements in the genome and performs transcriptional functions remain unclear. Here, we demonstrate that elevated OGT levels enhance HCC proliferation and metastasis, in vitro and in vivo, by orchestrating the transcription of numerous regulators of malignancy. Diverse transcriptional regulators are recruited by OGT in HCC cells undergoing malignant progression, which shapes genome-wide OGT chromatin cis-element occupation. Furthermore, an unrecognized cooperation between ZNF263 and OGT is crucial for activating downstream transcription in HCC cells. We reveal that O-GlcNAcylation of Ser662 is responsible for the chromatin association of ZNF263 at candidate gene promoters and the OGT-facilitated HCC malignant phenotypes. Our data establish the importance of aberrant OGT activity and ZNF263 O-GlcNAcylation in the malignant progression of HCC and support the investigation of OGT as a therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Cromatina/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , N-Acetilglucosaminiltransferases/genética , Proteínas de Ligação a DNA/genética
13.
EMBO Rep ; 24(7): e56458, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37249035

RESUMO

DNA topoisomerase IIα (TOP2A) plays a vital role in replication and cell division by catalytically altering DNA topology. It is a prominent target for anticancer drugs, but clinical efficacy is often compromised due to chemoresistance. In this study, we investigate the role of TOP2A O-GlcNAcylation in breast cancer cells and patient tumor tissues. Our results demonstrate that elevated TOP2A, especially its O-GlcNAcylation, promotes breast cancer malignant progression and resistance to adriamycin (Adm). O-GlcNAcylation at Ser1469 enhances TOP2A chromatin DNA binding and catalytic activity, leading to resistance to Adm in breast cancer cells and xenograft models. Mechanistically, O-GlcNAcylation-modulated interactions between TOP2A and cell cycle regulators influence downstream gene expression and contribute to breast cancer drug resistance. These results reveal a previously unrecognized mechanistic role for TOP2A O-GlcNAcylation in breast cancer chemotherapy resistance and provide support for targeting TOP2A O-GlcNAcylation in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos
14.
J Cancer ; 14(1): 99-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36605494

RESUMO

FLT3 tyrosine kinase inhibitors in combination with chemotherapy have shown some success in patients with FLT3 mutations. But a variety of mechanisms have led to the rapid resistance to the treatment. One of the most prominent is the metabolic alteration on aerobic glycolysis. We aim to explore the role of a high expressing microRNA, miR-155, in mediating resistance to chemotherapy and FLT3 inhibitor treatment. The deep sequencing data mining revealed the connection between glycolysis and drug resistance. MV411 cells with miR-155 knockout (KO) not only had increased sensitivity to FLT3 inhibitors but also Adriamycin (ADM) treatment. When combined with glycolysis inhibition the treatment response in MV411 cells further increased. Whereas in miR-155 KO cells, a lower glucose consumption level and lactic acid level were observed, and western blotting showed a decreased expression of key enzymes in glycolysis pathways. A negative correlation between PIK3R1 and miR-155 level can be observed in the sequencing data from FLT3-ITD+ AML patients. Moreover, luciferase reporter assay revealed that the 3'UTR of PIK3R1 mRNA can interact with the seed sequence of miR-155-5p. In conclusion, the loss of miR-155 increased treatment sensitivity to both chemotherapy and FLT3 inhibitors in FLT3-ITD+ AML cells via glycolysis blocking by targeting PIK3R1.

15.
Front Cell Infect Microbiol ; 13: 1268281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188631

RESUMO

Background: Blood is a common sample source for metagenomics next-generation sequencing (mNGS) in clinical practice. In this study, we aimed to detect the diagnostic value of blood mNGS in a large real-world cohorts. Methods: Blood mNGS results of 1,046 cases were collected and analyzed along with other laboratory tests. The capabilities and accuracy of blood mNGS were compared with other conventional approaches. Results: Both the surgical department and the intensive care unit had a positive rate of over 80% in blood mNGS. The positive rate of mNGS was consistent with clinical manifestations. Among the 739 positive samples, 532 were detected as mixed infections. Compared to pathogen cultures, the negative predictive value of blood mNGS for bacteria and fungi detection was 98.9% [95%CI, 96.9%-100%], with an accuracy rate of 89.39%. When compared with polymer chain reaction, the consistency rates of blood mNGS for virus identification were remarkably high. Conclusions: Blood mNGS have significant advantages in detecting difficult-to-cultivate bacteria or fungi, viruses, and mixed infections, which benefits patients of surgery department the most. Samples other than blood are recommended for mNGS test if a specific infection is suspected. The reporting threshold and reporting criteria of blood mNGS need to be optimized.


Assuntos
Coinfecção , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Unidades de Terapia Intensiva , Metagenômica
16.
J Int Med Res ; 50(10): 3000605221132704, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36271607

RESUMO

We describe a case of congenital esophageal stenosis in which the patient underwent ineffective balloon dilatation twice and eventually required surgery. The case was initially misdiagnosed as achalasia. Pathological findings revealed tracheobronchial remnants (TBRs) in the muscular layer of strictured esophageal tissue. Most TBR strictures are located in the middle and lower thirds of the esophagus. Esophagography is the main examination method for esophageal stricture, and the appearance of the "rat tail sign" is a key diagnostic indicator. Endoscopic ultrasonography can reveal hypoechoic cartilaginous structures. The gold standards for TBR treatment include esophageal stricture resection, end-to-end esophageal anastomosis, and the construction of structures to prevent reflux. At present, endoscopic longitudinal resection and transverse anastomosis of the anterior esophageal wall with partial cartilage resection without pyloroplasty are novel and practical TBR procedures. To avoid further complications, patients with congenital esophageal stenosis should be promptly treated surgically if balloon dilatation is ineffective.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Estenose Esofágica , Refluxo Gastroesofágico , Humanos , Estenose Esofágica/diagnóstico por imagem , Estenose Esofágica/etiologia , Anastomose Cirúrgica/efeitos adversos , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos
17.
J Ethnopharmacol ; 299: 115678, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058476

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatic fibrosis is a major consequence of liver disease. Radix Paeoniae Rubra (RPR), the dry root of Paeonia lactiflora Pall., has a long history of clinical application in traditional Chinese medicine (TCM) for the treatment of liver diseases. The researches of RPR active ingredients are mainly focused on paeoniflorin. However, the functional roles of other ingredients have not been clarified sufficiently in the treatment of hepatic fibrosis with RPR. AIM OF THE STUDY: This study was to figure out the anti-hepatic fibrosis potential and mechanisms of CS-4, one of the paeoniflorin-free subfraction of RPR. MATERIALS AND METHODS: With the guide of bioassay, CS-4, a subfraction of RPR showed in vitro inhibition of hepatic stellate cell activation, was obtained using multiple chromatographic techniques. Its ingredients were determined by UPLC-Q-TOF-MS/MS. Then, the target profiles of ingredients were obtained from the HERB database, and the disease targets were collected from the DisGeNET database. Through the network pharmacology method, a protein-protein interaction network of CS-4 against hepatic fibrosis was established to analyze and excavate the potential therapeutic targets. Combined with the KEGG analysis, a series of signaling pathways were obtained, thereby validated by western blot analysis. RESULTS: The paeoniflorin-free subfraction of RPR, CS-4, was obtained and showed the most potential anti-fibrotic effect in vitro. A total of 20 main ingredients were identified from CS-4 and considered as its active ingredients. From HERB and DisGeNET databases, 1460 potential targets of CS-4 and 1180 disease targets were obtained, respectively. The overlapped 79 targets were considered to exert the potential anti-fibrosis effect of CS-4, such as JAK2, MYC, SMAD3, and IFNG. The gene enrichment analysis revealed that classical TGF-ß/Smad signaling pathway and nonclassical TGF-ß/PI3K-AKT signaling pathway may be two of the main mechanisms of CS-4 against hepatic fibrosis, which supported by western blot analysis. CONCLUSION: In this study, a paeoniflorin-free subfraction with potential anti-hepatic fibrosis activity in vitro, CS-4, was obtained from RPR. Its multiple ingredients, multiple targets, and multiple mechanisms against hepatic fibrosis were explained by network pharmacology and verified by western blot analysis to further support the clinical applications of RPR.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos , Humanos , Cirrose Hepática/tratamento farmacológico , Monoterpenos , Farmacologia em Rede , Paeonia/química , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espectrometria de Massas em Tandem/métodos , Fator de Crescimento Transformador beta
18.
J Clin Lab Anal ; 36(11): e24703, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36129029

RESUMO

BACKGROUND: Aerobic glycolysis is a main characteristic of tumors, and inhibited glycolysis impedes the tumor development. Farnesoid X Receptor (FXR) mainly regulates bile acid metabolism. In this research, we mainly investigated whether FXR was involved in the regulation of glycolysis in colon cancer. METHODS: The differential expression analysis was performed on FXR and Enhancer Binding Protein Beta (CEBPB) data in colon cancer downloaded from The Cancer Genome Atlas (TCGA) database. Western blot and qRT-PCR were used to detect the expression levels of CEBPB and FXR. The upstream gene of FXR was predicted through bioinformatic analysis. ChIP and dual luciferease assays were performed to confirm the targeted relationship between CEBPB and FXR. Gene Set Enrichment Analysis (GSEA) was performed on FXR. Finally, the glycolysis capabilities of cells in each treatment group were detected. CCK-8, colony formation assay and flow cytometry were performed to test proliferation and apoptosis of colon cancer cells. RESULTS: FXR was lowly expressed at the cell level in colon cancer. In vitro assays verified the antitumor effect of FXR on colon cancer. ChIP and dual luciferase assays verified that transcription factor CEBPB bound with the promotor region of FXR, and negatively regulated the expression of FXR. Cell function assays proved that silenced expression of FXR promoted glycolysis, which promoted the development of colon cancer cells. CONCLUSION: The study on FXR-regulated glycolysis of colon cancer cells helps us to further understand the molecular mechanism by which FXR regulated the development of colon cancer cells.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Neoplasias do Colo , Receptores Citoplasmáticos e Nucleares , Humanos , Ácidos e Sais Biliares , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Neoplasias do Colo/metabolismo , Regulação da Expressão Gênica , Glicólise , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
Mol Cancer Ther ; 21(10): 1608-1621, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877472

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue cancer in children. Treatment outcomes, particularly for relapsed/refractory or metastatic disease, have not improved in decades. The current lack of novel therapies and low tumor mutational burden suggest that chimeric antigen receptor (CAR) T-cell therapy could be a promising approach to treating RMS. Previous work identified FGF receptor 4 (FGFR4, CD334) as being specifically upregulated in RMS, making it a candidate target for CAR T cells. We tested the feasibility of an FGFR4-targeted CAR for treating RMS using an NSG mouse with RH30 orthotopic (intramuscular) tumors. The first barrier we noted was that RMS tumors produce a collagen-rich stroma, replete with immunosuppressive myeloid cells, when T-cell therapy is initiated. This stromal response is not seen in tumor-only xenografts. When scFV-based binders were selected from phage display, CARs targeting FGFR4 were not effective until our screening approach was refined to identify binders to the membrane-proximal domain of FGFR4. Having improved the CAR, we devised a pharmacologic strategy to augment CAR T-cell activity by inhibiting the myeloid component of the T-cell-induced tumor stroma. The combined treatment of mice with anti-myeloid polypharmacy (targeting CSF1R, IDO1, iNOS, TGFbeta, PDL1, MIF, and myeloid misdifferentiation) allowed FGFR4 CAR T cells to successfully clear orthotopic RMS tumors, demonstrating that RMS tumors, even with very low copy-number targets, can be targeted by CAR T cells upon reversal of an immunosuppressive microenvironment.


Assuntos
Receptores de Antígenos Quiméricos , Rabdomiossarcoma , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Camundongos , Polimedicação , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Rabdomiossarcoma/tratamento farmacológico , Fator de Crescimento Transformador beta , Microambiente Tumoral
20.
Phytomedicine ; 102: 154148, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35576742

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) can develop into cirrhosis, liver failure, or hepatocellular carcinoma without effective treatment. However, there are currently no drugs for NASH treatment, and the development of new therapeutics has remained a major challenge in NASH research. Advances in traditional Chinese medicine to treat liver disease inspired us to search for new NASH candidates from Chi-Shao, a widely used traditional Chinese medicine. PURPOSE: In this research, we aimed to clarify the anti-NASH effect and the underlying mechanism of isopropylidenyl anemosapogenin (IA, 1), which was a new lead compound isolated from Chi-Shao. STUDY DESIGN AND METHODS: Isopropylidenyl anemosapogenin (IA, 1) was first discovered by collagen type I α 1 promoter luciferase bioassay-guided isolation and then characterized by single crystal X-ray diffraction analysis and enriched by semi-synthesis. Using various molecular biology techniques, the multiple anti-NASH efficacies and mechanisms of IA were clarified based on in vitro LX-2 and Huh7 cell models, along with the in vivo choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model and bile duct ligation (BDL)-induced rat model. The UPLC-MS/MS method was used to assess the plasma concentration of IA. RESULTS: A new lead compound IA was isolated from the traditional Chinese medicine Chi-Shao, which showed significant anti-liver fibrosis activity in TGF-ß1-treated LX-2 cells and anti-liver steatosis activity in oleic acid-treated Huh7 cells. Furthermore, IA could significantly ameliorate in vivo CDAHFD-induced liver injury by activating the farnesoid X receptor pathway, including its targets Nr0b2, Abcb11, and Slc10a2. Simultaneously, IA activated the autophagy pathway by activating the TFEB factor, thereby promoting lipid degradation. Its liver-protective and anti-fibrosis activities were verified by the BDL-induced rat model. Finally, with an oral administration of 100 mg/kg, IA achieved the maximum plasma concentration of 1.23 ± 0.18 µg/ml at 2.67 ± 0.58 h. CONCLUSION: IA, an unreported lupine-type triterpenoid isolated from Chi-shao, can significantly alleviate liver injury and fibrosis via farnesoid X receptor activation and TFEB-mediated autophagy, which indicates that IA could serve as a novel therapeutic candidate against NASH.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Fibrose , Fígado , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA