RESUMO
The marketability of natural pigment-based indicator films is impeded by their weaker color rendering and stability compared with synthetic pigments. Here, we developed novel colorimetric indicators by blending polyvinyl alcohol (PVA) with carboxymethyl cellulose (CMC) and combining alizarin and curcumin. Compared with the individual materials, the PVA and CMC composite films demonstrated superior thermal stability and water resistance. The manufacturing process of these colorimetric indicators was optimized using response surface methodology. The optimum conditions were as follows: PVA at 3.92 g/100 mL; plate pour amount, 48.6 mL; pigment content, 5.8 g/100 mL; pigment ratio, 0.76. The optimized film showed a robust response to CO2 (a color difference of 65.06 ± 2.43). The color difference of the optimized film improved by 98.5 % and 16.86 % for kiwifruit stored at room and low temperatures, respectively. This substantial color change aids in identifying the optimal consumption window for kiwifruit, boosting indicator precision and kiwifruit freshness accuracy.
RESUMO
Bioactive compounds are playing an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic basis for the selection and differentiation underlying bioactive compounds variations in citrus remain poorly understood. Here, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19,829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significantly differential accumulation of bioactive compounds in phenylpropane pathway, mainly flavonoids and coumarins, were unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases and UDP-glycosyltransferases. Moreover, we elucidated the citrus varieties with excellent antioxidant and anticancer capacities, clarifying the robust associations between distinct bioactivities and specific metabolites. Thus, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of the potential risk of coumarins. This study will illuminate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
RESUMO
Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.
RESUMO
Chemical investigation of the EtOAc extract of a deep-sea derived fungus Aspergillus sp. SCSIO41032 resulted in the isolation of ten known compounds, including eight aspochalasins. Their structures were elucidated by using extensive NMR spectroscopic, mass spectrometric and single crystal X-ray diffraction analysis. The detailed crystallographic data for structures 1, 2, and 4, along with the relative configurations of aspochalasin E (3) determined by its acetonide derivative were reported for the first time. The results of antitumor and antiviral activities showed that 3 displayed moderate antitumor activities against 22Rv1, PC-3, A549, and HCT-15 cell lines with IC50 values ranged from 5.9 ± 0.8 to 19.0 ± 7.7 µM, and 9 exhibited moderate antiviral activities against HSV-1/2 with EC50 values of 9.5 ± 0.5 and 5.4 ± 0.6 µM, respectively. Plate clone formation assays results indicated that 3 inhibited the 22Rv1, PC-3 cells growth in a dose-dependent manner.
RESUMO
Familial adenomatous polyposis (FAP) patients face an almost certain 100% risk of developing colorectal cancer, necessitating prophylactic colectomy to prevent disease progression. A crucial goal is to hinder this progression. In a recent clinical trial involving 14 FAP patients, half received 60 g of black raspberry (BRB) powder orally and BRB suppositories at bedtime, while the other half received only BRB suppositories at bedtime over 9 months. This intervention led to a notable reduction in rectal polyps for 11 patients, although 3 showed no response. In this study, we delved into the metabolic changes induced by BRBs in the same patient cohort. Employing mass spectrometry-based non-targeted metabolomics, we analyzed pre- and post-BRB urinary and plasma samples from the 11 responders. The results showed significant alterations in 23 urinary and 6 plasma metabolites, influencing various pathways including polyamine, glutathione metabolism, the tricarboxylic acid cycle, inositol metabolism, and benzoate production. BRBs notably elevated levels of several metabolites associated with these pathways, suggesting a potential mechanism through which BRBs facilitate rectal polyp regression in FAP patients by modulating multiple metabolic pathways. Notably, metabolites derived from BRB polyphenols were significantly increased post-BRB intervention, emphasizing the potential therapeutic value of BRBs in FAP management.
RESUMO
The impact of the simulated gastrointestinal digestion process on walnut protein and the potential anti-inflammatory properties of its metabolites was studied. Structural changes induced by digestion, notably in α-Helix, ß-Turn, and Random Coil configurations, were unveiled. Proteins over 10,000 Da significantly decreased by 35.6 %. Antioxidant activity in these metabolites paralleled increased amino acid content. Molecular docking identified three walnut polypeptides-IPAGTPVYLINR, FQGQLPR, and VVYVLR-with potent anti-inflammatory properties. RMSD and RMSF analysis demonstrated the stable and flexible interaction of these polypeptides with their target proteins. In lipopolysaccharide (LPS)-induced inflammation in normal human colon mucosal epithelial NCM460 cells, these peptides decreased 5-hydroxytryptamine (5-HT), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) expression, while mitigating cell apoptosis and inflammation. Our study offers valuable insights into walnut protein physiology, shedding light on its potential health benefits.
Assuntos
Juglans , Humanos , Juglans/química , Fator A de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Peptídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Inflamação/tratamento farmacológico , DigestãoRESUMO
Allogeneic Hematopoietic stem cell transplantation (HSCT) offers a potential cure for patients with hematologic malignancies. Unfortunately, graft-versus-host disease (GVHD) remains a major obstacle to the greater success of this treatment. Despite intensive research efforts over the past several decades, GVHD is still a major cause of morbidity and mortality in patients receiving allogeneic HSCT. The genetic disparity between donor and recipient is the primary factor that dictates the extent of alloimmune response and the severity of acute GVHD (aGVHD). However, some nongenetic factors are also actively involved in GVHD pathogenesis. Thus, identifying host factors that can be readily modified to reduce GVHD risk is of important clinical significance. We are particularly interested in the potential role of nutrition, as a nongenetic factor, in the etiology and management of aGVHD. In this article, we summarize recent findings regarding how different routes of nutritional support and various dietary factors affect aGVHD. Since diet is one of the most important factors that shape gut microbiota, we also provide evidence for a potential link between certain nutrients and gut microbiota in recipients of allogeneic HSCT. We propose a shifting role of nutrition from support to therapy in GVHD by targeting gut microbiota.
Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença Enxerto-Hospedeiro/terapia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Neoplasias Hematológicas/terapia , Estado NutricionalRESUMO
Myelodysplastic syndromes (MDS) are a subset of myeloid malignancies defined by clonality of immature hematopoietic stem cells that leads to faulty blood cell development. These syndromes can lead to an increased risk of infection and may transform into acute myeloid leukemia, making it critical to determine effective treatments for the condition. While hypomethylating agents such as azacitidine and decitabine, as well as stem cell transplants, have been delineated as favored treatments for MDS, not all patients are physiologically receptive to these treatments. However, black raspberries (BRBs) have been shown to exert hypomethylating effects in various malignancies, with minimal adverse effects and thus a broader range of potential candidacies. This study aimed to investigate the potential of BRBs to exert such effects on MDS using Addition of Sex Combs Like/Tet Methylcytosine Dioxygenase 2 (Asxl1/Tet2) double knockout mice (Vav-cre Asxl1fl/fl Tet2fl/fl), which typically manifest symptoms around 25 weeks of age, mirroring genetic mutations found in humans with MDS. Following a 12-week dietary supplementation of Vav-cre Asxl1fl/fl Tet2fl/fl mice with 5% BRBs, we observed both hyper- and hypomethylation at multiple transcription start sites and intragenic locations linked to critical pathways, including hematopoiesis. This methylation profile may have implications for delaying the onset of MDS, prompting a need for in-depth investigation. Our results emphasize the importance of exploring whether an extended BRB intervention can effectively alter MDS risk and elucidate the relationship between BRB-induced methylation changes, thus further unlocking the potential benefits of BRBs for MDS patients.
RESUMO
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but severely debilitating drug-induced bone disorder in the jawbone region. The first MRONJ was reported in 2003 after bisphosphonate (BP) exposure. Recently, other drugs, such as receptor activator of NF-κB ligand (RANKL) inhibitor denosumab and antiangiogenic agents, were also associated with MRONJ. The purpose of this study was to evaluate the incidence and risk factors for MRONJ related to BPs or denosumab in cancer patients in real-world clinical settings using data from the OneFlorida Clinical Research Consortium. We queried the electronic health records of participants with prescriptions of intravenous (IV) BPs or denosumab between January 1, 2012, and September 1, 2021, in the OneFlorida Consortium. Time to MRONJ diagnosis was evaluated using the Kaplan-Meier method, and Cox regression analysis was performed to estimate the adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for MRONJ. A total of 5689 participants had one or more prescriptions of IV BP or denosumab within this study period and were included in this study. Among these participants, 52 (0.9%) had a diagnosis of MRONJ. The overall rate of MRONJ was 0.73%, 0.86%, and 3.50% in the cancer patients treated with IV BPs, denosumab, and sequential IV BPs and denosumab, respectively. The risk of MRONJ was similar in participants treated with denosumab alone compared to those treated with IV BPs alone (HR: 1.25, 95% CI: 0.66-2.34, p = .49). Patients with sequential prescription of IV BP and denosumab were at much higher risk for MRONJ, with an adjusted HR of 4.49, 95% CI of 1.96-10.28, p = .0004. In conclusion, in real-world clinical settings, the rates of MRONJ associated with IV BPs and denosumab were similar, while the sequential treatment of these two drug classes was associated with a much higher risk of MRONJ. © 2022 American Society for Bone and Mineral Research (ASBMR).
Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Neoplasias , Osteonecrose , Humanos , Conservadores da Densidade Óssea/uso terapêutico , Denosumab/uso terapêutico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/epidemiologia , Difosfonatos/uso terapêutico , Osteonecrose/induzido quimicamente , Neoplasias/induzido quimicamente , Neoplasias/complicações , Neoplasias/tratamento farmacológicoRESUMO
SCOPE: Black raspberries (BRBs) have colorectal cancer (CRC) chemo-preventative effects. As CRC originates from an intestinal stem cell (ISC) this study has investigated the impact of BRBs on normal and mutant ISCs. METHODS AND RESULTS: Mice with an inducible Apcfl mutation in either the ISC (Lgr5CreERT2 ) or intestinal crypt (AhCre/VillinCreERT2 ) are fed a control or 10% BRB-supplemented diet. This study uses immunohistochemistry, gene expression analysis, and organoid culture to evaluate the effect of BRBs on intestinal homeostasis. RNAscope is performed for ISC markers on CRC adjacent normal colonic tissue pre and post BRB intervention from patients. 10% BRB diet has no overt effect on murine intestinal homeostasis, despite a reduced stem cell number. Following Apc ISC deletion, BRB diet extends lifespan and reduces tumor area. In the AhCre model, BRB diet attenuates the "crypt-progenitor" phenotype and reduces ISC marker gene expression. In ex vivo culture BRBs reduce the self-renewal capacity of murine and human Apc deficient organoids. Finally, the study observes a reduction in ISC marker gene expression in adjacent normal crypts following introduction of BRBs to the human bowel. CONCLUSION: BRBs play a role in CRC chemoprevention by protectively regulating the ISC compartment and further supports the use of BRBs in CRC prevention.
Assuntos
Rubus , Animais , Colo/metabolismo , Dieta , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Células-TroncoRESUMO
Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are bone marrow disorders characterized by cytopenias and progression to acute myeloid leukemia. Hypomethylating agents (HMAs) are Food and Drug Administration-approved therapies for MDS and MDS/MPN patients. HMAs have improved patients' survival and quality of life when compared with other therapies. Although HMAs are effective in MDS and MDS/MPN patients, they are associated with significant toxicities that place a large burden on patients. Our goal is to develop a safer and more effective HMA from natural products. We previously reported that black raspberries (BRBs) have hypomethylating effects in the colon, blood, spleen, and bone marrow of mice. In addition, BRBs exert hypomethylating effects in patients with colorectal cancer and familial adenomatous polyposis. In the current study, we conducted a pilot clinical trial to evaluate the hypomethylating effects of BRBs in patients with low-risk MDS or MDS/MPN. Peripheral blood mononuclear cells (PBMCs) were isolated before and after three months of BRB intervention. CD45+ cells were isolated from PBMCs for methylation analysis using a reduced-representation bisulfite sequencing assay. Each patient served as their own matched control, with their measurements assessed before intervention providing a baseline for post-intervention results. Clinically, our data showed that BRBs were well-tolerated with no side effects. When methylation data was combined, BRBs significantly affected methylation levels of 477 promoter regions. Pathway analysis suggests that BRB-induced intragenic hypomethylation drives leukocyte differentiation. A randomized, placebo-controlled clinical trial of BRB use in low-risk MDS or MDS/MPN patients is warranted.
RESUMO
Administration of black raspberries (BRBs) and their anthocyanin metabolites, including protocatechuic acid (PCA), has been demonstrated to exert chemopreventive effects against colorectal cancer through alteration of innate immune cell trafficking, modulation of metabolic and inflammatory pathways, etc. Previous research has shown that the gut microbiome is important in the effectiveness of chemoprevention of colorectal cancer. This study aimed to assess the potency of PCA versus BRB dietary administration for colorectal cancer prevention using an Apc Min/+ mouse model and determine how bacterial profiles change in response to PCA and BRBs. A control AIN-76A diet supplemented with 5% BRBs, 500 ppm PCA, or 1,000 ppm PCA was administered to Apc Min/+ mice. Changes in incidence, polyp number, and polyp size regarding adenomas of the small intestine and colon were assessed after completion of the diet regimen. There were significant decreases in adenoma development by dietary administration of PCA and BRBs in the small intestine and the 5% BRB-supplemented diet in the colon. Pro-inflammatory bacterial profiles were replaced with anti-inflammatory bacteria in all treatments, with the greatest effects in the 5% BRB and 500 ppm PCA-supplemented diets accompanied by decreased COX-2 and prostaglandin E2 levels in colonic mucosa. We further showed that 500 ppm PCA, but not 1,000 ppm PCA, increased IFN-γ and SMAD4 levels in primary cultured human natural killer cells. These results suggest that both BRBs and a lower dose PCA can benefit colorectal cancer patients by inhibiting the growth and proliferation of adenomas and promoting a more favorable gut microbiome condition.
RESUMO
Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation (HSCT). An impaired intestinal epithelial barrier is an important component of GVHD pathogenesis. However, contributing host factors that modulate mucosal barrier integrity during GVHD are poorly defined. We hypothesized that vitamin A and retinoic acid (RA) exert positive impacts on maintaining intestinal barrier function after HSCT, thus preventing or dampening GVHD severity. Unexpectedly, we found that exogenous RA increased intestinal permeability of recipient mice after allogeneic HSCT. Serum bacterial endotoxin levels were significantly higher in GVHD mice fed a vitamin A-high (VAH) diet compared to those fed a vitamin A-normal (VAN) diet, indicating a more compromised intestinal barrier function. Furthermore, VAH mice showed more severe lung GVHD with increased donor T cell infiltration in this tissue and died significantly faster than VAN recipients. 16S rRNA sequencing of fecal samples revealed significant differences in the diversity and composition of gut microbiota between VAN and VAH transplant recipients. Collectively, we show that retinoic acid signaling may negatively impact intestinal barrier function during GVHD. Mild vitamin A supplementation is associated with increased lung GVHD and more profound gut dysbiosis. Micronutrients such as vitamin A could modulate complications of allogeneic HSCT, which may be mediated by shaping gut microbiota.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Mucosa Intestinal/efeitos dos fármacos , Vitamina A/farmacologia , Vitaminas/farmacologia , Animais , Células CACO-2 , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Doença Enxerto-Hospedeiro , Humanos , Mucosa Intestinal/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16S , Transdução de Sinais/efeitos dos fármacos , Transplante HomólogoRESUMO
N 6-methyladenosine (m6A) is the most prevalent posttranscriptional modification on RNA. NK cells are the predominant innate lymphoid cells that mediate antiviral and antitumor immunity. However, whether and how m6A modifications affect NK cell immunity remain unknown. Here, we discover that YTHDF2, a well-known m6A reader, is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impairs NK cell antitumor and antiviral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. YTHDF2 promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Transcriptome-wide screening identifies Tardbp to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells. Collectively, we elucidate the biological roles of m6A modifications in NK cells and highlight a new direction to harness NK cell antitumor immunity.
Assuntos
Adenosina/análogos & derivados , Antivirais/imunologia , Imunidade , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , RNA/metabolismo , Adenosina/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Homeostase , Interleucina-15/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Transcriptoma/genéticaRESUMO
Free fatty acid receptor 2 (FFAR2) has been reported as a tumor suppressor in colon cancer development. The current study investigated the effects of FFAR2 signaling on energy metabolism and gut microbiota profiling in a colorectal cancer mouse model (Apc Min/+ ). Ffar2 deficiency promoted colonic polyp development and enhanced fatty acid oxidation and bile acid metabolism. Gut microbiome sequencing analysis showed distinct clustering among wild-type, Apc Min/+ , and Apc Min/+ -Ffar2 -/- mice. The relative abundance of Flavobacteriaceae and Verrucomicrobiaceae was significantly increased in the Apc Min/+ -Ffar2 -/- mice compared to the Apc Min/+ mice. In addition, knocking-down FFAR2 in the human colon cancer cell lines (SW480 and HT29) resulted in increased expression of several key enzymes in fatty acid oxidation, such as carnitine palmitoyltransferase 2, acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, C-2 to C-3 short chain, and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit. Collectively, these results demonstrated that Ffar2 deficiency significantly altered profiles of fatty acid metabolites and gut microbiome, which might promote colorectal cancer development.
RESUMO
Dietary interventions are key nutritional strategies to prevent, improve, and prolong the survival of cancer patients. Lycopene, one of the strongest natural antioxidants, and its biologically active metabolites, have shown significant potential to prevent a variety of cancers, including prostate, breast, and stomach cancers, making it a promising anti-cancer agent. We review the potential regulatory mechanisms and epidemiological evidences of lycopene and its metabolites to delay the progression of cancers at different developmental stages. Recent studies have revealed that lycopene and its metabolites mediate multiple molecular mechanisms in cancer treatment such as redox homeostasis, selective anti-proliferation, apoptosis, anti-angiogenesis, tumour microenvironment regulation, and anti-metastasis and anti-invasion. Gut microbes and cholesterol metabolism are also the potential regulation targets of lycopene and its metabolites. As a dietary supplement, the synergistic interaction of lycopene with other drugs and nutrients is highlighted especially due to its binding activity with other nutrients in the diet found central to the fight against cancer. Furthermore, the application of several of novel lycopene delivery carriers are on the rise including nanoemulsions, nanostructured liposomes, and polymer nanoparticles for cancer prevention as discussed in this review with future needed development. Moreover, the synergistic mechanism between lycopene and other nutrients or drugs and novel delivery systems of lycopene should now be deeply investigated to improve its clinical application in cancer intervention in the future.
Assuntos
Anticarcinógenos , Licopeno , Neoplasias , Animais , Sistemas de Liberação de Medicamentos , HumanosRESUMO
A diet supplemented with freeze-dried black raspberries (BRBs) has been demonstrated to modulate various biochemical and physiological pathways in both colorectal cancer (CRC) patients and ApcMin/+ mice, which are utilized to model CRC. These changes have been previously shown to exert beneficial chemopreventive effects against CRC, with outcomes such as reduction of adenoma development and inflammation. This study aimed to assess whether these effects manifest in a meaningful change in survival rates by comparing these rates between ApcMin/+ mice administered a 5% BRB-supplemented diet or a control AIN-76A diet. Percent survival over days elapsed was assessed in order to determine a median length of survival for each group of mice. Significant increases in survival rates with consumption of the BRB diet versus the control diet were demonstrated in both male and female mouse study groups. Male and female control groups were also compared in order to reduce confounding due to the sex of the mice; the difference in survival rates between male and female mice was not significant (p = 0.07, *p < 0.05), as male mice lived for a median of 143 days and females for 194 days. The results of this study suggest that administration of a BRB-supplemented diet may potentially prolong the lifespan and increase survival rates of colorectal cancer patients.
RESUMO
Casein is an excellent source for producing anticoagulant and angiotensin I-converting enzyme inhibitory (ACEI) peptides. Here, the anticoagulant and ACEI activities of the casein hydrolysate produced by in vitro simulated gastrointestinal (GI) digestion were evaluated. The casein hydrolysate showed potent anticoagulant activity by prolonging the thrombin time (TT) and activated partial thromboplastin time (APTT), and also presenting great ACEI activity, with an IC50 value of 0.52 mg mL-1. Subsequently, the transepithelial transport properties of the casein hydrolysate were analyzed by using the Caco-2 cell monolayer model. The peptides profile of the casein hydrolysate before and after it passed across the Caco-2 cell monolayer were identified by NanoLC-Q-TOF-MS/MS. The results showed that a total of 121 and 184 peptides were identified before and after casein hydrolysate moved through the Caco-2 cell monolayer, respectively. Eighty peptides were presented at both time points of the transport study. Among the 80 peptides, 26 of them were screened with a high possibility of exerting physiological roles after they were absorbed into the blood by in silico methods, and the physicochemical characteristics, e.g., hydrophobicity, net charge, and toxicity of the peptides also be evaluated. Our results provided a new prospect and approach for producing bioactive peptides from casein with anticoagulant and ACEI activities.
Assuntos
Caseínas , Espectrometria de Massas em Tandem , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anticoagulantes , Células CACO-2 , Humanos , PeptídeosRESUMO
Polymethoxyflavones (PMFs) are special flavonoids in citrus fruits that have been suggested to be beneficial to human health. However, whether PMFs in citrus fruit alter human gut microbiota is not well understood. The aim of the present study was to investigate the effects of PMF-rich fraction from Ougan (Citrus reticulata cv. Suavissima) on gut microbiota and evaluate the intestinal metabolic profile of PMFs in Institute of Cancer Research mice. The main components of the PMF-rich fraction were nobiletin, tangeretin, and 5-demethylnobiletin. The composition of the gut microbiota was analyzed using 16S ribosomal DNA sequencing. The results showed that after oral administration, the composition of mice gut microbiota was significantly altered. The relative abundance of two probiotics, Lactobacillus and Bifidobacterium, were found to increase significantly. A total of 21 metabolites of PMFs were detected in mice intestinal content by high performance liquid chromatography electrospray ionization tandem mass spectrometry, and they were generated through demethylation, demethoxylation, hydroxylation, and glucuronidation. Our results provided evidence that PMFs have potential beneficial regulatory effects on gut microbiota that in turn metabolize PMFs, which warrants further investigation in human clinical trials.
RESUMO
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon, with a steadily rising prevalence in Western and newly industrialized countries. UC patients have a cancer incidence as high as 10% after 20 years of the disease. Although the importance of fruits and vegetables in defense against UC is beginning to be appreciated, the mechanisms remain largely unclear. In the current study, we reported that dietary black raspberries (BRBs) decreased colonic inflammation in the mucosa and submucosa of interleukin (IL)-10 knockout (KO) mice. We then used colon, spleen, and plasma from those mice to investigate whether BRBs exert their anti-inflammatory effects by correcting dysregulated toll-like receptor (TLR)-4 signaling to downregulate prostaglandin E2 (PGE2). Other studies reported that spleen is the reservoir of macrophages and depletion of macrophages in IL-10 KO mice prevents the development of colitis. Our results showed that BRBs decreased the percentages of macrophages in spleens of IL-10 KO mice. Moreover, mechanistically, the BRB diet corrected dysregulated TLR-4 signaling in cells from the colon and spleen, decreased PGE2 and prostaglandin I2, and increased 15-lipoxygenase and its product, 13-S-hydroxyoctadecadienoic acid, in plasma of IL-10 KO mice. Therefore, we have elucidated one of the anti-inflammatory mechanisms of BRBs, and have identified biomarkers that could be indicators of response in UC patients treated with them. Our findings with BRBs could well apply to many other commonly consumed fruits and vegetables.