Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Phytochemistry ; 210: 113666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003362

RESUMO

Twenty-six eudesmanolides including six undescribed compounds were isolated from the flowers of Sphagneticola trilobata (L.) Pruski. Their structures were elucidated based on the interpretation of spectroscopic techniques, NMR calculation, and DP4+ analysis. The stereochemistry of (1S,4S,5R,6S,7R,8S,9R,10S,11S)-1,4,8- trihydroxy-6-isobutyryloxy-11-methyleudesman-9,12-olide (1) was demonstrated by single crystal X-ray diffraction. All eudesmanolides were evaluated for their anti-proliferative activities against four human tumor cell lines (HepG2, HeLa, SGC-7901, and MCF-7). 1α,4ß-Dihydroxy-6α-methacryloxy-8ß-isobutyryloxyeudesman-9,12-olide (3) and wedelolide B (8) showed pronounced cytotoxic effects against AGS cell line with IC50 values of 1.31 and 0.89 µM, respectively. Their anti-proliferative activities against AGS cells were exerted through a dose-dependent apoptosis pathway, as verified by cell and nucleus morphological assessment, clone formation assay, and Western blot analysis. Furthermore, 1α,4ß,8ß-trihydroxy-6ß-methacryloxyeudesman-9,12-olide (2) and 1α,4ß,9ß-trihydroxy-6α-isobutyryloxy- 11α-13-methacryloxyprostatolide (7) performed significant inhibitory effects on lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages with IC50 values of 11.82 and 11.05 µM, respectively. Moreover, compounds 2 and 7 could block the nuclear translocation of NF-κB and reduce the expression of iNOS, COX-2, IL-1ß, and IL-6 to exert anti-inflammatory effects. This study provides evidence for the utilization of the eudesmanolides from S. trilobata as lead compounds for further research due to their cytotoxic potential.


Assuntos
Antineoplásicos , Asteraceae , Humanos , Asteraceae/química , Linhagem Celular Tumoral , Flores/química , Espectroscopia de Ressonância Magnética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
3.
J Agric Food Chem ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752041

RESUMO

The berries of black nightshade (Solanum nigrum L.) are consumed as a favorite fruit in some regions and have been reported to possess a range of biological activities. Previous studies have found that the steroidal saponins from the berries of S. nigrum (SN) showed potential antileukemic activity, although the underlying mechanism remains to be revealed. This study investigated the effects and mechanisms of SN in combination with adriamycin to reverse leukemia multidrug resistance in vivo and in vitro. The results indicated that the combination of SN and adriamycin displayed enhanced suppression ability both in vitro and in vivo by the modulation of drug efflux proteins. Further study revealed that SN and adriamycin co-treatment induced cell apoptosis in K562/ADR cells through caspase pathways and autophagy through the PI3K/Akt/mTOR and MAPK signaling pathway. This study provides a new prospect of the berries of black nightshade in multidrug resistance therapy of cancer.

4.
Drug Discov Today ; 28(4): 103514, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736580

RESUMO

Small interfering RNA (siRNA) therapeutics for cancer are a focus of increasing research interest. However, the major obstacle to their clinical application is the targeted delivery of siRNA to cancer cells at desirable levels. Cell membrane-coated nanocarriers have the advantage of combining the properties of both cell membranes and nanoparticles (NPs). In this review, we highlight the most common RNAi therapeutics and the extracellular and intracellular barriers to siRNA delivery. Moreover, we discuss clinical applications of different cell membrane-coated nanocarriers for targeted siRNA delivery, including cancer cell membranes (CCMs), platelet membranes, erythrocyte membranes, stem cell membranes, exosome membranes, and hybrid membranes. Taken together, biomimetic cell membrane-coated nanotechnology is a promising strategy for targeted siRNA delivery for cancer treatment.


Assuntos
Exossomos , Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno , Biomimética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos
5.
Adv Healthc Mater ; 12(7): e2202751, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442997

RESUMO

Angiogenesis plays a critical role in diabetic wound healing. However, no effective strategies have been developed to target endothelial cells (ECs) to facilitate diabetic wound healing. Dapagliflozin (DA) as a sodium-glucose linked transporter 2 (SGLT2) inhibitor, may promote neovascularization in diabetic mice via HIF-1α-mediated enhancement of angiogenesis. Here, the bioinspired nanovesicles (NVs) prepared from induced pluripotent stem cells-derived ECs through an extrusion approach are reported, which can function as exosome mimetics to achieve targeted deliver of DA. Abundant membrane C-X-C motif chemokine receptor 4 conferred the EC-targeting ability of these NVs and the endothelial homology facilitated the accumulation in ECs. Furthermore, these DA-loaded induced pluripotent stem cells (iPSC)-EC NVs can facilitate angiogenesis and diabetic wound healing by HIF-1α/VEGFA pathway. Taken together, this study indicated that targeting ECs and regulating angiogenesis may be a promising strategy for the treatment of diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Exossomos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Neovascularização Fisiológica/fisiologia , Cicatrização , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
6.
Bioact Mater ; 23: 69-79, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36406251

RESUMO

Background: Immunosuppressive M2 macrophages in the tumor microenvironment (TME) can mediate the therapeutic resistance of tumors, and seriously affect the clinical efficacy and prognosis of tumor patients. This study aims to develop a novel drug delivery system for dual-targeting tumor and macrophages to inhibit tumor and induce macrophage polarization. Methods: The anti-tumor effects of methyltransferase like 14 (METTL14) were investigated both in vitro and in vivo. The underlying mechanisms of METTL14 regulating macrophages were also explored in this study. We further constructed the cyclic (Arg-Gly-Asp) (cRGD) peptide modified macrophage membrane-coated nanovesicles to co-deliver METTL14 and the TLR4 agonist. Results: We found that METTL14 significantly inhibits the growth of tumor in vitro. METTL14 might downregulate TICAM2 and inhibit the Toll-like receptor 4 (TLR4) pathway of macrophages, meanwhile, the combination of METTL14 and the TLR4 agonist could induce M1 polarization of macrophages. Macrophage membrane-coated nanovesicles are characterized by easy modification, drug loading, and dual-targeting tumor and macrophages, and cRGD modification can further enhance its targeting ability. It showed that the nanovesicles could improve the in vivo stability of METTL14, and dual-target tumor and macrophages to inhibit tumor and induce M1 polarization of macrophages. Conclusions: This study anticipates achieving the dual purposes of tumor inhibition and macrophage polarization, and providing a new therapeutic strategy for tumors.

7.
Front Genet ; 13: 1000515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386816

RESUMO

In several tumors, Nicotinamide N-Methyltransferase (NNMT) was identified as a bridge between methylation metabolism and tumorigenesis and was associated with a poor prognosis. This research aims is to study the prognostic value of NNMT in cancer, its relationship with DNA methylation, and the immune microenvironment. On the basis of the Cancer Genome Atlas and the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Cellminer, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Clinical Proteomic Tumor Analysis Consortium, we used a series of bioinformatics strategies to investigate the potential carcinogenicity of NNMT, including the relationship between NNMT expression and prognosis, tumor mutational burden, microsatellite instability, and sensitivity analysis of anticancer drugs. The GeneMANIA, STRING, and BioGRID databases were examined for protein-protein interactions, and Gene Ontology and the Kyoto Encyclopedia of Genes were used to infer the signal pathway. The results indicated that NNMT was significantly expressed in several tumor tissues compared to the matching non-tumor tissues. Increased NNMT expression was linked to reduced OS, DSS, and DFI. In addition, there was a link between NNMT expression and TMB and MSI in 18 cancer types, and between NNMT expression and DNA methylation in 23 cancer types. Further study of NNMT gene alteration data revealed that deletion was the most prevalent form of NNMT mutation, and that there was a significant negative association between NNMT expression and mismatch repair genes. In addition, there was a strong positive connection between NNMT and immune infiltration in 28 types of tumors, and the immune cells that infiltrated the tumors displayed a characteristic NNMT pattern. According to the enrichment study, cell migration, cell motility, and cell adhesion were highly enriched in biological processes, and NNMT may be associated with the PI3K-Akt signaling pathway. By downregulating gene methylation or impacting the immunological microenvironment widely, NNMT may drive carcinogenesis and cause a poor prognosis. Our research showed that NNMT could be used as a biomarker of tumor immune infiltration and poor prognosis, thus providing a unique strategy for cancer therapy.

8.
Biomaterials ; 290: 121821, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201949

RESUMO

Hypoxia is a common feature within many types of solid tumors, which is closely associated with limited efficacy for tumor therapies. Moreover, the inability to reach hypoxic tumor cells that are distant from blood vessels results in tumor-targeting and penetrating drug delivery systems in urgent need. Here, glucose oxidase (GOX) and hypoxia-activated prodrug tirapazamine (TPZ) are loaded into photothermal conversion agent polydopamine (PDA) as the glucose/oxygen-exhausting nanoreactor named PGT. We further construct a tumor cell membrane-coated nanovesicle for the targeted delivery of PGT. This biomimetic nanovesicle exhibits significantly improved tumor-targeting and tumor-penetrating abilities. After internalization by the tumor cells, the loaded drug is quickly released in response to near-infrared (NIR) laser. The PGT nanoreactor can exhaust glucose and oxygen, and further enhance hypoxia within tumor, which efficiently inhibits hypoxic tumor by combining starvation therapy and hypoxia-activated chemotherapy. Mechanically, it is revealed that the nanoreactor significantly increases hypoxia level and downregulates the expression of hypoxia-inhibitory factor-1α (HIF-1α), thereby promoting T cell activation and macrophage polarization to remodel tumor immunosuppressive microenvironment. Therefore, this tumor microenvironment-regulable nanoreactor with sustainable and cascade targeted starvation-chemotherapy provides a novel insight into the treatment of hypoxic tumor.


Assuntos
Nanopartículas , Neoplasias , Humanos , Biomimética , Oxigênio/uso terapêutico , Microambiente Tumoral , Glucose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hipóxia , Membrana Celular/metabolismo , Nanotecnologia , Linhagem Celular Tumoral
9.
J Control Release ; 351: 151-163, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122895

RESUMO

Photodynamic therapy (PDT) can produce a large amount of reactive oxygen species (ROS) in the radiation field to kill tumor cells. However, the sustainable anti-tumor efficacy of PDT is limited due to the hypoxic microenvironment of tumor. In this study, classic PDT agent indocyanine green (ICG) and hypoxia-activated chemotherapeutic drug tirapazamine (TPZ) were loaded on mesoporous polydopamine (PDA) to construct PDA@ICG-TPZ nanoparticles (PIT). Then, PIT was camouflaged with cyclic arginine-glycine-aspartate (cRGD) modified tumor cell membranes to obtain the engineered membrane-coated nanoreactor (cRGD-mPIT). The nanoreactor cRGD-mPIT could achieve the dual-targeting ability via tumor cell membrane mediated homologous targeting and cRGD mediated active targeting. With the enhanced tumor-targeting and penetrating delivery system, PIT could efficiently accumulate in hypoxic tumor cells and the loaded drugs were quickly released in response to near-infrared (NIR) laser. The nanoreactor might produce cytotoxic ROS under NIR and further enhance hypoxia within tumor to activate TPZ, which efficiently inhibited hypoxic tumor by synergistic photodynamic-chemotherapy. Mechanically, hypoxia-inhibitory factor-1α (HIF-1α) was down-regulated by the synergistic therapy. Accordingly, the cRGD-mPIT nanoreactor with sustainable and cascade anti-tumor effects and satisfied biosafety might be a promising strategy in hypoxic tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Tirapazamina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Verde de Indocianina/uso terapêutico , Hipóxia , Nanotecnologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes , Microambiente Tumoral
10.
Theranostics ; 12(13): 5877-5887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966586

RESUMO

Rationale: Osteosarcoma (OS) is the most common primary bone tumor with a poor prognosis, but the detailed mechanism is still unclear. A comprehensive investigation of tumor microenvironment (TME) of OS might help find effective anti-tumor strategies. Single-cell transcriptomics is a powerful new tool to explore TME. Therefore, this study is designed to investigate the TME and gene expression pattern of primary and recurrent OS at the single-cell level. Methods: The single-cell RNA sequencing and bioinformatic analysis were conducted to investigate the cellular constitution of primary, recurrent, and lung metastatic OS lesions according to the datasets of GSE152048 and GSE162454. TIMER database was used to investigate the role of LOX in the prognosis of sarcoma. The functions of related cells and markers were further confirmed by in vitro and in vivo experiments. Results: Cancer associated fibroblasts (CAFs) were found with a higher infiltrating level in recurrent OS, and were enriched in the epithelial-mesenchymal transition (EMT) pathway. CAFs showed remarkably increased expression of LOX, which might lead to EMT and poor prognosis of OS. Mechanically, LOX regulated the function of CAFs and macrophage polarization to remodel the tumor immune microenvironment. Moreover, LOX inhibitor could inhibit migration and promote apoptosis of OS both in vitro and in vivo. Conclusions: This study revealed the heterogeneity of recurrent OS and highlighted an innovative mechanism that CAFs regulate EMT of OS via LOX. Targeting LOX of CAFs showed promising efficacy in remodeling TME and treating recurrent OS.


Assuntos
Neoplasias Ósseas , Fibroblastos Associados a Câncer , Osteossarcoma , Neoplasias Ósseas/patologia , Fibroblastos Associados a Câncer/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Osteossarcoma/patologia , Transcriptoma , Microambiente Tumoral
11.
Mol Ther Nucleic Acids ; 27: 947-955, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35211355

RESUMO

N6-methyladenosine (m6A), as the most common RNA modification, plays a vital role in the development of cancers. Circular RNAs (circRNAs) are a class of single-stranded covalently closed RNA molecules. Recently, m6A modification has been identified as performing biological functions for regulating circRNAs. Increasing evidence also shows that circRNAs are involved in cancer progression by targeting m6A regulators. In this review, we describe the functional crosstalk between m6A and circRNAs, and illustrate their roles in cancer development. m6A methylation mediates the biogenesis, stability, and cytoplasmic export of circRNAs in different cancer types. Moreover, circRNAs regulate the expression of m6A regulators, participate in the degradation of m6A regulators, and regulate the m6A modification of target mRNAs. Finally, we discuss the potential applications and future research directions of m6A modification and circRNAs in cancer. Further understanding of the biological roles of m6A and circRNAs will provide new insight into the diagnosis and treatment of cancer patients.

12.
J Control Release ; 343: 107-117, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077741

RESUMO

Exosomes as nanosized membrane vesicles, could targeted deliver therapeutic agents by modification with target ligands. Exosome-derived non-coding RNAs play a vital role in the development of tumors. Previous evidences reveal that long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) has anti-tumor properties. Whereas, the inhibitory effects of exosome-derived lncRNA MEG3 in osteosarcoma (OS) remain largely unknown. In this study, we utilize the engineering technology to combine exosome and lncRNA for tumor-targeting therapy of OS. We elucidated the anti-OS effects of lncRNA MEG3, and then prepared the c(RGDyK)-modified and MEG3-loaded exosomes (cRGD-Exo-MEG3). The engineered exosomes cRGD-Exo-MEG3 could deliver more efficiently to OS cells both in vitro and in vivo. In this way, cRGD-Exo-MEG3 facilitate the anti-OS effects of MEG3 significantly, with the help of enhanced tumor-targeting therapy. This study elucidates that engineered exosomes as targeted lncRNA MEG3 delivery vehicles have potentially therapeutic effects for OS.


Assuntos
Neoplasias Ósseas , Exossomos , Osteossarcoma , RNA Longo não Codificante , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Exossomos/genética , Exossomos/patologia , Humanos , Osteossarcoma/genética , Osteossarcoma/terapia , RNA Longo não Codificante/genética
13.
Biomater Transl ; 3(3): 201-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36654778

RESUMO

Microorganisms with innate and artificial advantages have been regarded as intelligent drug delivery systems for cancer therapy with the help of engineering technology. Although numerous studies have confirmed the promising prospects of microorganisms in cancer, several problems such as immunogenicity and toxicity should be addressed before further clinical applications. This review aims to investigate the development of engineered microorganism-based delivery systems for targeted cancer therapy. The main types of microorganisms such as bacteria, viruses, fungi, microalgae, and their components and characteristics are introduced in detail. Moreover, the engineering strategies and biomaterials design of microorganisms are further discussed. Most importantly, we discuss the innovative attempts and therapeutic effects of engineered microorganisms in cancer. Taken together, engineered microorganism-based delivery systems hold tremendous promise for biomedical applications in targeted cancer therapy.

14.
Front Cell Dev Biol ; 9: 737314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712664

RESUMO

Osteosarcoma is the most common bone tumor affecting both adolescents and children. Although localized osteosarcoma has an overall survival of >70% in the clinic, metastatic, refractory, and recurrent osteosarcoma have poorer survival rates. Exosomes are extracellular vesicles released by cells and originally thought to be a way for cells to discard unwanted products. Currently, exosomes have been reported to be involved in intercellular cross-talk and induce changes in cellular behavior by transferring cargoes (proteins, DNA, RNA, and lipids) between cells. Exosomes regulate osteosarcoma progression, and processes such as tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Increasing evidences shows that exosomes have significant potential in promoting osteosarcoma progression and development. In this review, we describe the current research status of exosomes in osteosarcoma, focusing on the biological functions of osteosarcoma exosomes as well as their application in osteosarcoma as diagnostic biomarkers and therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA