Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(36): 42930-42941, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643157

RESUMO

Bone tissue engineering involving scaffolds is recognized as the ideal approach for bone defect repair. However, scaffold materials exhibit several limitations, such as low bioactivity, less osseointegration, and poor processability, for developing bone tissue engineering. Herein, a bioactive and shape memory bone scaffold was fabricated using the biodegradable polyester copolymer's four-dimensional fused deposition modeling. The poly(ε-caprolactone) segment with a transition temperature near body temperature was selected as the molecular switch to realize the shape memory effect. Another copolymer segment, i.e., poly(propylene fumarate), was introduced for post-cross-linking and improving the regulation effect of the resulting bioadaptable scaffold on osteogenesis. To mimic the porous structures and mechanical properties of the native spongy bone, the pore size of the printed scaffold was set as ∼300 µm, and a comparable compression modulus was achieved after photo-cross-linking. Compared with the pristine poly(ε-caprolactone), the scaffold made from fumarate-functionalized copolymer considerably enhanced the adhesion and osteogenic differentiation of MC3T3-E1 cells in vitro. In vivo experiments indicated that the bioactive shape memory scaffold could quickly adapt to the defect geometry during implantation via shape change, and bone regeneration at the defect site was remarkably promoted, providing a promising strategy to treat bone defects in the clinic, substantial bone defects with irregular geometry.


Assuntos
Osteogênese , Procedimentos de Cirurgia Plástica , Poliésteres , Osso e Ossos , Regeneração Óssea , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA