RESUMO
Background: Breast cancer-related lymphedema (BCRL) frequently occurs after axillary lymph node dissection and remains incurable even with lymphaticovenular anastomosis. Exercise interventions have emerged as a potential non-pharmacological management approach. However, standardized exercise recommendations tailored to BCRL patients are lacking. Purpose: This study evaluated the impact of high and low compliance exercise interventions, aligned with ACSM recommendations, on quality of life (QOL), shoulder range of motion (ROM), and arm volume in BCRL patients. It further aimed to determine the optimal exercise dosage, assessed via the FITT (frequency, intensity, time, type) principle, that maximizes health benefits for BCRL patients. Methods: Adhering to the PRISMA guidelines for systematic reviews and meta-analyses, we conducted a comprehensive literature search in various databases, including PubMed, Embase, Cochrane Library, and Web of Science, encompassing the period from the inception of these databases to December 2023. We extracted data on exercise form, frequency, intensity, duration, repetitions, and sets from the identified studies. Subsequently, a meta-analysis and review were conducted. The exercise interventions were evaluated based on ACSM recommendations and categorized as either high or low compliance with ACSM standards. Fixed or random effects models were employed to compare outcomes across study subgroups with comparable results. Additionally, funnel plot analyses, sensitivity analyses, and Egger's and Begg's tests were conducted to evaluate the potential for bias. Results: 15 studies encompassing 863 patients with BCRL were analyzed. Eleven studies exhibited high ACSM compliance, while four demonstrated low ACSM compliance. Regarding QOL, the overall standard mean difference (SMD) was 0.13 (95% CI: -1.07, 1.33). Specifically, the SMD for the high-adherence subgroup was 0.91 (95% CI: 0.33, 1.49; p = 0.002). For ROM, the overall SMD was 1.21 (95% CI: -0.19, 2.61). For arm volume, the overall SMD was -0.06 (95% CI: -0.22, 0.10). QOL results differed significantly in the high-adherence subgroup, whereas no significant effect on ROM or arm volume was observed. Conclusion: The study revealed significant QOL improvements in patients with high ACSM compliance, contrasted with those with low compliance. Conversely, no notable changes in ROM or arm volume were observed. Notably, the high adherence group tended to show better ROM during exercise and stable arm volume. Future research is needed to validate these findings.
RESUMO
The stimulator of interferon genes (STING) plays a significant role in immune defense and protection against tumor proliferation. Many cyclic dinucleotide (CDN) analogues have been reported to regulate its activity, but the dynamic process involved when the ligands activate STING remains unclear. In this work, all-atom molecular dynamics simulations were performed to explore the binding mode between human STING (hSTING) and four cyclic adenosine-inosine monophosphate analogs (cAIMPs), as well as 2',3'-cGMP-AMP (2',3'-cGAMP). The results indicate that these cAIMPs adopt a U-shaped configuration within the binding pocket, forming extensive non-covalent interaction networks with hSTING. These interactions play a significant role in augmenting the binding, particularly in interactions with Tyr167, Arg238, Thr263, and Thr267. Additionally, the presence of hydrophobic interactions between the ligand and the receptor further contributes to the overall stability of the binding. In this work, the conformational changes in hSTING upon binding these cAIMPs were also studied and a significant tendency for hSTING to shift from open to closed state was observed after binding some of the cAIMP ligands.
Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Ligação Proteica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sítios de Ligação , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Ligantes , Interações Hidrofóbicas e HidrofílicasRESUMO
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model. At the end of treatment, lumbar (L4-L6) spinal cord was extracted, and RNA sequencing and bioinformatic analysis were performed to investigate the potential genes and pathways related to CIPN and GeXIVA[1,2]. GeXIVA[1,2] inhibited the development of mechanical allodynia induced by chronic oxaliplatin treatment. Repeated injections of GeXIVA[1,2] for 3 weeks had no effect on the mice's normal pain threshold or locomotor activity and anxiety-like behavior, as evaluated in the open field test (OFT) and elevated plus maze (EPM). Our RNA sequencing results identified 209 differentially expressed genes (DEGs) in the CIPN model, and simultaneously injecting GeXIVA[1,2] with oxaliplatin altered 53 of the identified DEGs. These reverted genes were significantly enriched in immune-related pathways represented by the cytokine-cytokine receptor interaction pathway. Our findings suggest that GeXIVA[1,2] could be a potential therapeutic compound for chronic oxaliplatin-induced CIPN management.
Assuntos
Antineoplásicos , Conotoxinas , Neuralgia , Camundongos , Animais , Oxaliplatina/efeitos adversos , Conotoxinas/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Modelos Animais de Doenças , Antagonistas Nicotínicos/farmacologia , Expressão Gênica , Antineoplásicos/efeitos adversosRESUMO
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising therapeutic target for treating various cancers (such as breast cancer, liver cancer, etc.) and other diseases (blood diseases, cardiovascular diseases, etc.), owing to its observed overexpression, thereby presenting significant opportunities in drug development. Since its discovery in 2004, extensive research has been conducted on LSD1 inhibitors, with notable contributions from computational approaches. This review systematically summarizes LSD1 inhibitors investigated through computer-aided drug design (CADD) technologies since 2010, showcasing a diverse range of chemical scaffolds, including phenelzine derivatives, tranylcypromine (abbreviated as TCP or 2-PCPA) derivatives, nitrogen-containing heterocyclic (pyridine, pyrimidine, azole, thieno[3,2-b]pyrrole, indole, quinoline and benzoxazole) derivatives, natural products (including sanguinarine, phenolic compounds and resveratrol derivatives, flavonoids and other natural products) and others (including thiourea compounds, Fenoldopam and Raloxifene, (4-cyanophenyl)glycine derivatives, propargylamine and benzohydrazide derivatives and inhibitors discovered through AI techniques). Computational techniques, such as virtual screening, molecular docking and 3D-QSAR models, have played a pivotal role in elucidating the interactions between these inhibitors and LSD1. Moreover, the integration of cutting-edge technologies such as artificial intelligence holds promise in facilitating the discovery of novel LSD1 inhibitors. The comprehensive insights presented in this review aim to provide valuable information for advancing further research on LSD1 inhibitors.
Assuntos
Produtos Biológicos , Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Lisina , Simulação de Acoplamento Molecular , Inteligência Artificial , Desenho de Fármacos , Histona Desmetilases/metabolismo , Relação Estrutura-AtividadeRESUMO
Developing low-cost and self-supported bifunctional catalysts for highly efficient water splitting devices is of great significance. Herein, different from previously reported NiFe2O4-based electrocatalysts, we have grown nano-NiFe2O4 directly onto the iron foil (IF) surface and in situ introduced Sn4+ into NiFe2O4. The resulting experimental phenomena confirmed that the as-synthesized Sn-NiFe2O4/IF can deliver large-current densities (>1000 mA cm-2) during oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes at a low overpotential. The needed overpotentials at the current density of 10 and 1000 mA cm-2 are 231 and 368 mV for OER and 57 and 439 mV for HER, respectively. Additionally, when applied for the two-electrode water splitting, the corresponding needed voltage for Sn-NiFe2O4/IF at the current density of 10 mA cm-2 was only 1.56 V, which was comparable to the commercial Pt/C-RuO2/IF electrode. Thus, the introduced Sn4+ greatly enhanced the electrocatalytic property of Sn-NiFe2O4/IF, resulting in a superior bifunctional catalyst that can be applied for large-scale hydrogen production.
RESUMO
BACKGROUND: Natural killer (NK) cells play an important first-line role against tumour and viral infections and are regulated by inhibitory receptor expression. Among these inhibitory receptors, the expression, function, and mechanism of cluster of differentiation 47 (CD47) on NK cells during human immunodeficiency virus (HIV) infection remain unclear. METHODS: Fresh peripheral blood mononuclear cells (PBMCs) were collected from people living with HIV (PLWH) and HIV negative controls (NC) subjects. Soluble ligand expression levels of CD47 were measured using ELISA. HIV viral proteins or Toll-like receptor 7/8 (TLR7/8) agonist was used to investigate the mechanisms underlying the upregulation of CD47 expression. The effect of CD47 on NK cell activation, proliferation, and function were evaluated by flow cytometry. RNA-seq was used to identify downstream pathways for CD47 and its ligand interactions. A small molecule inhibitor was used to restore the inhibition of NK cell function by CD47 signalling. RESULTS: CD47 expression was highly upregulated on the NK cells from PLWH, which could be due to activation of the Toll-like receptor 7/8 (TLR7/8) pathway. Compared with NC subjects, PLWH subjects exhibited elevated levels of CD47 ligands, thrombospondin-1 (TSP1), and counter ligand signal regulatory protein-α (SIRPα). The TSP1-CD47 axis drives the suppression of interferon gamma (IFN-γ) production and the activation of the Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway in NK cells. After treatment with a STAT3 inhibitor, the NK cells from PLWH showed significantly improved IFN-γ production. CONCLUSIONS: The current data indicate that the binding of the inhibitory receptor CD47 to plasma TSP1 suppresses NK cell IFN-γ production by activating the JAK/STAT3 pathway during HIV infection. Our results suggest that CD47 and its related signalling pathways could be targets for improving NK cell function in people living with HIV.
Assuntos
Infecções por HIV , Receptor 7 Toll-Like , Humanos , Antígeno CD47 , Janus Quinases/metabolismo , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/metabolismo , Ligantes , Fator de Transcrição STAT3/metabolismo , Interferon gama/metabolismoRESUMO
α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.
Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Ratos , Animais , Receptores Nicotínicos/química , Conotoxinas/química , Conotoxinas/farmacologia , Caramujo Conus/química , Peptídeos/química , ÉsteresRESUMO
Lysine-specific demethylase 1 (LSD1) is a histone-modifying enzyme, which is a significant target for anticancer drug research. In this work, 40 reported tetrahydroquinoline-derivative inhibitors targeting LSD1 were studied to establish the three-dimensional quantitative structure-activity relationship (3D-QSAR). The established models CoMFA (Comparative Molecular Field Analysis (q2 = 0.778, Rpred2 = 0.709)) and CoMSIA (Comparative Molecular Similarity Index Analysis (q2 = 0.764, Rpred2 = 0.713)) yielded good statistical and predictive properties. Based on the corresponding contour maps, seven novel tetrahydroquinoline derivatives were designed. For more information, three of the compounds (D1, D4, and Z17) and the template molecule 18x were explored with molecular dynamics simulations, binding free energy calculations by MM/PBSA method as well as the ADME (absorption, distribution, metabolism, and excretion) prediction. The results suggested that D1, D4, and Z17 performed better than template molecule 18x due to the introduction of the amino and hydrophobic groups, especially for the D1 and D4, which will provide guidance for the design of LSD1 inhibitors.
Assuntos
Antineoplásicos , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas , Antineoplásicos/farmacologia , Desenho de FármacosRESUMO
The ectonucleotidases CD38 and CD39 have a critical regulatory effect on tumors and viral infections via the adenosine axis. Natural killer (NK) cells produce cytokines, induce cytotoxic responses against viral infection, and acquire immunoregulatory properties. However, the roles of CD38 and CD39 expressed NK cells in HIV disease require elucidation. Our study showed that the proportions of CD38+CD39+ NK cells in HIV-infected individuals were positively associated with HIV viral loads and negatively associated with the CD4+ T cell count. Furthermore, CD38+CD39+ NK cells expressed additional inhibitory receptors, TIM-3 and LAG-3, and produced more TGF-ß. Moreover, autologous NK cells suppressed the proliferation of CD8+ T and CD4+ T cells of HIV-infected individuals, and inhibiting CD38 and CD39 on NK cells restored CD8+ T and CD4+ T cell proliferation in vitro. In conclusion, these data support a critical role for CD38 and CD39 on NK cells in HIV infection and targeting CD38 and CD39 on NK cells may be a potential therapeutic strategy against HIV infection.
Assuntos
Infecções por HIV , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Células Matadoras Naturais , Adenosina , Proliferação de Células , Progressão da Doença , Citocinas , Contagem de Células , Fator de Crescimento Transformador betaRESUMO
In this study, a method of preparing fertilizers with the fly ash from biomass power plants and the waste acid solution from flue gas desulfurization and denitrification was disclosed. In addition, the study also explored the effects of added fine particles, unburned biochar, and other commercial fertilizers on soil water retention and slow-release effect of fertilizers. The analysis was done by comparing the aggregation degrees of crystalline salt and the variations of the chemical bonds. The experimental results showed that the added fine particles could effectively increase the water absorption of fertilizers, which helped to improve soil water retention. Meanwhile, the fine particles could strengthen the special adsorption of basic compounds containing N, P, and other nutrients by biochar and enhance the slow-release effect of fertilizers. Although adding part commercial fertilizers weakened the water absorption of fertilizers slightly, it had only a relatively small effect on the aggregation of water-soluble crystalline salt on the surfaces of fine particles and biochar. Furthermore, the microwave was applied to promote the absorption of N by unburned biochar, during which only small amounts of volatile were released and lost. The experiments had confirmed that microwave irradiation could promote the agglomeration of biochar on crystalline salt effectively, thus enhancing the slow-release effect of crystalline salt in fertilizers. Finally, pot experiments demonstrated that the self-prepared fertilizer improved plant growth by its better water absorption and slow-release properties during the whole growth period, which had promising application potential as the slow-release fertilizer in the plant growth field.
Assuntos
Desnitrificação , Fertilizantes , Enxofre/química , Eliminação de Resíduos Líquidos , Ácidos/química , Biomassa , Carvão Vegetal/química , Fertilizantes/análise , Solo/química , Eliminação de Resíduos Líquidos/métodos , Água/análiseRESUMO
The awareness of the long-term toxicities of cancer survivors after chemotherapy treatment has been gradually strengthened as the population of cancer survivors grows. Generally, chemotherapy-induced peripheral neurotoxicity (CIPN) is studied by animal models which are not only expensive and time-consuming, but also species-specific differences. The generation of human induced pluripotent stem cells (hiPSCs) and differentiation of peripheral neurons have provided an in vitro model to elucidate the risk of CIPN. Here, we developed a drug-induced peripheral neurotoxicity model using hiPSC-derived peripheral neurons (hiPSC-PNs) to study the mechanisms of different chemotherapeutic agents on neuronal viability using LDH assay, a cell apoptosis assay determined by caspase 3/7 activation, neurite outgrowth, ion channel expression and neurotransmitter release following treatment of cisplatin, bortezomib, ixabepilone, or pomalidomide. Our data showed that the multiple endpoints of the hiPSC-PNs model had different sensitivity to various chemotherapeutic agents. Furthermore, the chemotherapeutics separated cell viability from the decrease in neurite lengthand changed levels of ion channels and neurotransmitters to a certain extent. Thus, we study the mechanisms of peripheral neurotoxicity induced by chemotherapeutic agents through changes in these indicators.
Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Background: Overexpression of LSD1 is associated with the occurrence of many diseases, including cancers, which makes LSD1 a significant target for anticancer drug research. Methodology & Results: With the aid of 3D quantitative structure-activity relationship models established with 34 reported resveratrol derivative LSD1 inhibitors, derivatives 35-40 were designed. Absorption, distribution, metabolism and excretion calculations showed that they may have good bioavailability and drug likeness. Additionally, 35 and 37 presented good antitumor effects in an in vitro antiproliferative assay. Molecular docking and molecular dynamics simulation results indicated that 35 and 37 can establish extensive interactions with LSD1. Conclusion: The results of computational prediction and experimental validation suggest that 35 and 37 are effective antitumor inhibitors, which provides some ideas and directions for the development of new anticancer LSD1 inhibitors.
Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Resveratrol/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Resveratrol/síntese química , Resveratrol/químicaRESUMO
Recent studies have shown that long noncoding RNAs (lncRNAs) are critical regulators in the central nervous system (CNS). However, their roles in the cerebellum are currently unclear. In this work, we identified the isoform 204 of lncRNA Gm2694 (designated as lncRNA-Promoting Methylation (lncRNA-PM)) is highly expressed in the cerebellum and derived from the antisense strand of the upstream region of Cerebellin-1 (Cbln1), a well-known critical cerebellar synaptic organizer. LncRNA-PM exhibits similar spatiotemporal expression pattern as Cbln1 in the postnatal mouse cerebellum and activates the transcription of Cbln1 through Pax6/Mll1-mediated H3K4me3. In mouse cerebellum, lncRNA-PM, Pax6/Mll1, and H3K4me3 are all associated with the regulatory regions of Cbln1. Knockdown of lncRNA-PM in cerebellum causes deficiencies in Cbln1 expression, cerebellar synaptic integrity, and motor function. Together, our work reveals an lncRNA-mediated transcriptional activation of Cbln1 through Pax6-Mll1-H3K4me3 and provides novel insights of the essential roles of lncRNA in the cerebellum.
Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição PAX6/metabolismo , Precursores de Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Sinapses/metabolismo , Processamento Alternativo/genética , Cerebelo/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Atividade Motora , Proteína de Leucina Linfoide-Mieloide/genética , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Longo não Codificante/genética , Ativação Transcricional/genéticaRESUMO
RNA binding proteins (RBPs) are dysregulated and associated with the occurrence and development in various malignant tumors. However, the role of RBPs in tongue cancer are largely unclear. Here, by integrating the differential gene expression analysis and the Weighted Gene Co-expression Network Analysis (WGCNA) of TCGA-retrieved RNA-seq data, we identified a total of 171 differential co-expression RBPs. Then, in a protein-protein interaction (PPI) network containing 134 nodes (RBPs) and 315 network edges (RBP-RBP interacting networks), the top 30 hub RBPs were identified using the CytoHubba plugin of Cytoscape. Furthermore, we investigated the expression and prognostic value of these RBPs and their highly correlated networks. Among them, six RBPs (PGK1, SLC20A1, LEPR, CYP19A1, ZC3H12D, and PFKM) were shown to be the prognosis-related hub RBPs (prhRBPs). Based on these hub RBPs, we constructed a prognostic model and found that the patients in the high-risk group had dramatically poor overall survival compared to those in low-risk group. In addition, we validated the prognostic model in GSE41613, another tongue cancer patient cohort from GEO datasets. The time-dependent receiver operating characteristic (ROC) analysis of the prognostic model further confirmed the predictive capability of the risk model for tongue cancer. As suggested in functional annotation analysis, we found an intensive enrichment of these prhRBPs in metabolic pathways, including AMPK, HIF-1 signaling pathway, Glycolysis, and steroid hormone biosynthesis. Together, our study revealed the underlying role of RBP in tongue cancer biology and potentially unveiled novel targets for cancer therapy.
RESUMO
Histone Lysine Specific Demethylase 1 (LSD1) is overexpressed in many cancers and becomes a new target for anticancer drugs. In recent years, small molecule inhibitors with various structures targeting LSD1 have been reported. Here we report the binding interaction modes of a series of thieno[3,2-b]pyrrole-5-carboxamide LSD1 inhibitors using molecular docking, and three-dimensional quantitative structure-activity relationships (3D-QSAR). Comparative molecular field analysis (CoMFA q 2 = 0.783, r 2 = 0.944, r pred 2 = 0.851) and comparative molecular similarity indices analysis (CoMSIA q 2 = 0.728, r 2 = 0.982, r pred 2 = 0.814) were used to establish 3D-QSAR models, which had good verification and prediction capabilities. Based on the contour maps and the information of molecular docking, 8 novel small molecules were designed in silico, among which compounds D4, D5 and D8 with high predictive activity were subjected to further molecular dynamics simulations (MD), and their possible binding modes were explored. It was found that Asn535 plays a crucial role in stabilizing the inhibitors. Furthermore, ADME and bioavailability prediction for D4, D5 and D8 were carried out. The results would provide valuable guidance for designing new reversible LSD1 inhibitors in the future.
RESUMO
Overexpression of lysine specific demethylase 1 (LSD1) has been found in many cancers. New anticancer drugs targeting LSD1 have been designed. The research on irreversible LSD1 inhibitors has entered the clinical stage, while the research on reversible LSD1 inhibitors has progressed slowly so far. In this study, 41 stilbene derivatives were studied as reversible inhibitors by three-dimensional quantitative structure-activity relationship (3D-QSAR). Comparative molecular field analysis (CoMFA q 2 = 0.623, r 2 = 0.987, r pred 2 = 0.857) and comparative molecular similarity indices analysis (CoMSIA q 2 = 0.728, r 2 = 0.960, r pred 2 = 0.899) were used to establish the model, and the structure-activity relationship of the compounds was explained by the contour maps. The binding site was predicted by two different kinds of software, and the binding modes of the compounds were further explored. A series of key amino acids Val288, Ser289, Gly314, Thr624, Lys661 were found to play a key role in the activity of the compounds. Molecular dynamics (MD) simulations were carried out for compounds 04, 17, 21, and 35, which had different activities. The reasons for the activity differences were explained by the interaction between compounds and LSD1. The binding free energy was calculated by molecular mechanics generalized Born surface area (MM/GBSA). We hope that this research will provide valuable information for the design of new reversible LSD1 inhibitors in the future.
Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Estilbenos/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-AtividadeRESUMO
OBJECTIVE: In this study, we aimed to expand current knowledge of head and neck squamous cell carcinoma (HNSCC)-associated long noncoding RNAs (lncRNAs), and to discover potential lncRNA prognostic biomarkers for HNSCC based on next-generation RNA-seq. METHODS: RNA-seq data of 546 samples from patients with HNSCC were downloaded from The Cancer Genome Atlas (TCGA), including 43 paired samples of tumor tissue and adjacent normal tissue. An integrated analysis incorporating differential expression, weighted gene co-expression networks, functional enrichment, clinical parameters, and survival analysis was conducted to discover HNSCC-associated lncRNAs. The function of CYTOR was verified by cell-based experiments. To further identify lncRNAs with prognostic significance, a multivariate Cox proportional hazard regression analysis was performed. The identified lncRNAs were validated with an independent cohort using clinical feature relevance analysis and multivariate Cox regression analysis. RESULTS: We identified nine HNSCC-relevant lncRNAs likely to play pivotal roles in HNSCC onset and development. By functional enrichment analysis, we revealed that CYTOR might participate in the multistep pathological processes of cancer, such as ribosome biogenesis and maintenance of genomic stability. CYTOR was identified to be positively correlated with lymph node metastasis, and significantly negatively correlated with overall survival (OS) and disease free survival (DFS) of HNSCC patients. Moreover, CYTOR inhibited cell apoptosis following treatment with the chemotherapeutic drug diamminedichloroplatinum (DDP). HCG22, the most dramatically down-regulated lncRNA in tumor tissue, may function in epidermis differentiation. It was also significantly associated with several clinical features of patients with HNSCC, and positively correlated with patient survival. CYTOR and HCG22 maintained their prognostic values independent of several clinical features in multivariate Cox hazards analysis. Notably, validation either based on an independent HNSCC cohort or by laboratory experiments confirmed these findings. CONCLUSIONS: Our transcriptomic analysis suggested that dysregulation of these HNSCC-associated lncRNAs might be involved in HNSCC oncogenesis and progression. Moreover, CYTOR and HCG22 were confirmed as two independent prognostic factors for HNSCC patient survival, providing new insights into the roles of these lncRNAs in HNSCC as well as clinical applications.
Assuntos
Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , RNA Longo não Codificante/fisiologia , Ribossomos/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adulto , Idoso , Diferenciação Celular , Células Cultivadas , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologiaRESUMO
Tamoxifen is a widely used personalized medicine for estrogen receptor (ER)-positive breast cancer, but approximately 30% of patients receiving the treatment relapse due to tamoxifen resistance (TamR). Recently, several reports have linked lncRNAs to cancer drug resistance. However, the role of lncRNAs in TamR is unclear. To identify TamR-related lncRNAs, we first used a bioinformatic approach to predict whether they have connection with known TamR-associated genes by starBase v2.0 and divided them into two groups. Group A contains lncRNAs that connect with known TamR genes and group B contains lncRNAs that show no predicted interaction. Among the 12 lncRNAs in group A, 58.3% of them are either up- or downregulated in MCF-7/TamR cells compared to the sensitive cells. In contrast, the expression levels of all group B lncRNAs are not changed in MCF-7/TamR cells. LINC00894-002 exhibits the most sophisticated network pattern and is the most downregulated lncRNA in MCF-7/TamR cells. Moreover, we find that LINC00894-002 is directly upregulated by ERα. Knocking down LINC00894-002 downregulates expression of miR-200a-3p and miR-200b-3p, upregulates the expression of TGF-ß2 and ZEB1, and finally contributes to TamR. Herein, we report the first case of an inhibitory lncRNA against TamR through the miR-200-TGF-ß2-ZEB1 signaling pathway.