Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2557-2565, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812156

RESUMO

This study aims to explore the potential mechanism of Biejiajian Pills in the treatment of non-alcoholic steatohepatitis(NASH) based on lipidomics. A mouse model of NASH was induced by high-fat/high cholesterol diet, and the mice of the normal group were fed with a normal diet. The therapeutic efficacy of Biejiajian Pills against NASH was evaluated through biochemical indexes in both of serum and liver, as well as the hepatic histopathology. Lipid metabolites in the liver were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS)-based lipidomics. Then the partial least-squares discriminant analysis, t-test and receiver operating characteristic curve analysis were performed to screen the differential lipid metabolites and the main biomarkers. The proteins and genes involved in the lipid metabolism and inflammatory response were detected by Western blot and qPCR. The results demonstrated that Biejiajian Pills notably lowered the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), and alkaline phosphatase(ALP) in the serum and the levels of triglyceride(TG) and total cholesterol(TC) in the liver tissue. In addition, Biejiajian Pills alleviated the lipid accumulation, hepatocyte ballooning, and liver fibrosis. Lipidomics revealed that Biejiajian Pills regulated the content of 11 biomarkers including phosphatidyl choline(PC), phosphatidyl ethanolamine(PE), sphingomyelin(SM), and ceramide(Cer). The results of Western blot and qPCR demonstrated that Biejiajian Pills regulated the expression of sterol regulatory element-binding protein 1(SREBP1), peroxisome proliferator-activated receptor gamma(PPARγ) and phospho-AMP-activated protein kinase(p-AMPK), and the mRNA level of fatty acid translocase 36 gene(Cd36), Pparγ, cardiolipin synthase 1 gene(Crls1), and phospholipase Cß2 gene(Plcß2). Furthermore, Biejiajian Pills displayed inhibitory effects on phospho-p38 MAPK(p-p38 MAPK) and phospho-ERK1/2(p-ERK1/2) and the mRNA levels of interleukin-6 gene(Il-6), interleukin-1ß gene(Il-1ß) and tumor necrosis factor-α gene(Tnf-α). In conclusion, Biejiajian Pills could alleviate the lipid metabolism disorders and regulate the expression of SREBP1, PPARγ, and p-AMPK and the mRNA levels of pro-inflammatory cytokines.


Assuntos
Medicamentos de Ervas Chinesas , Metabolismo dos Lipídeos , Lipidômica , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Camundongos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Humanos , Alanina Transaminase/metabolismo , Alanina Transaminase/genética , Alanina Transaminase/sangue , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética
2.
Front Mol Neurosci ; 16: 1195327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520430

RESUMO

Introduction: Recombinant adeno-associated viruses (rAAVs) are widely used in genetic therapeutics. AAV5 has shown superior transduction efficiency, targeting neurons and glial cells in primate brains. Nonetheless, the comprehensive impact of AAV5 transduction on molecular and behavioral alterations remains unexplored. This study focuses on evaluating the effects of AAV5 transduction in the hippocampus, a critical region for memory formation and emotional processes. Methods: In this experiment, fluorescence-activated cell sorting (FACS) was utilized to isolate the mCherry-labeled pyramidal neurons in the hippocampus of CaMkIIα-cre mice following three different doses rAAV5-mCherry infusion after 3 weeks, which were then subjected to RNA sequencing (RNA-seq) to assess gene expression profiles. The cytokines concentration, mRNA expression, and glial response in hippocampi were confirmed by ELASA, digital droplet PCR and immunohistochemistry respectively. Locomotion and anxiety-like behaviors were elevated by Open Field Test and Elevated Plus Maze Test, while the Y-Maze were used to assessed spatial working memory. Recognition memory and fear responses were examined by the Novel Object Recognition Test and Fear Conditioning Test, respectively. Results: We found that 2.88 × 1010 v.g rAAV5 transduction significantly upregulated genes related to the immune response and apoptosis, and downregulated genes associated with mitochondrial function and synaptic plasticity in hippocampal pyramidal neurons, while did not induce neuronal loss and gliosis compared with 2.88 × 109 v.g and 2.88 × 108 v.g. Furthermore, the same doses impaired working memory and contextual fear memory, without effects on locomotion and anxiety-related behaviors. Discussion: Our findings highlight the detrimental impact of high-dose administration compared to median-dose or low-dose, resulting in increased neural vulnerability and impaired memory. Therefore, when considering the expression effectiveness of exogenous genes, it is crucial to also take potential side effects into account in clinical settings. However, the precise molecular mechanisms underlying these drawbacks of high-dose rAAV5-mCherry still require further investigation in future studies.

3.
Appl Environ Microbiol ; 89(4): e0174322, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939340

RESUMO

Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.


Assuntos
Doenças Transmissíveis , Exossomos , Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Staphylococcus aureus/fisiologia , Exossomos/metabolismo , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Células Epiteliais/fisiologia , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/veterinária , Glândulas Mamárias Animais/microbiologia
4.
Biol Psychiatry ; 92(3): 179-192, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489874

RESUMO

BACKGROUND: Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive. METHODS: By use of ex vivo slice electrophysiology, chemogenetic manipulations, RNA interference, gene knockout, behavioral testing, and two depression mouse models, one induced by chronic social defeat stress and one caused by a IP3R2-null mutation, we systematically investigated the cellular and neural circuit mechanisms underlying ATP deficiency-induced depressive-like behavior. RESULTS: Deficiency of extracellular ATP in both defeated susceptible mice and IP3R2-null mutation mice led to reduced GABAergic (gamma-aminobutyric acidergic) inhibition and elevated excitability in lateral habenula-projecting, but not dorsal raphe-projecting, medial prefrontal cortex (mPFC) neurons. Furthermore, the P2X2 receptor in GABAergic interneurons mediated ATP modulation of lateral habenula-projecting mPFC neurons and depressive-like behavior. Remarkably, chemogenetic activation of the mPFC-lateral habenula pathway induced depressive-like behavior in C57BL/6J mice, while inhibition of this pathway was sufficient to alleviate the behavioral impairment in both defeated susceptible and IP3R2-null mutant mice. CONCLUSIONS: Overall, our study provides compelling evidence that ATP level in the mPFC is critically involved in regulating depressive-like behavior in a pathway-specific manner. These results shed new light on the mechanisms underlying depression and the antidepressant effect of ATP.


Assuntos
Habenula , Trifosfato de Adenosina/metabolismo , Animais , Depressão/etiologia , Núcleo Dorsal da Rafe/metabolismo , Habenula/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Pré-Frontal/metabolismo
5.
Mol Psychiatry ; 27(2): 896-906, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697452

RESUMO

Neuroplasticity in the medial prefrontal cortex (mPFC) is essential for fear extinction, the process of which forms the basis of the general therapeutic process used to treat human fear disorders. However, the underlying molecules and local circuit elements controlling neuronal activity and concomitant induction of plasticity remain unclear. Here we show that sustained plasticity of the parvalbumin (PV) neuronal network in the infralimbic (IL) mPFC is required for fear extinction in adult male mice and identify the involvement of neuregulin 1-ErbB4 signalling in PV network plasticity-mediated fear extinction. Moreover, regulation of fear extinction by basal medial amygdala (BMA)-projecting IL neurons is dependent on PV network configuration. Together, these results uncover the local molecular circuit mechanisms underlying mPFC-mediated top-down control of fear extinction, suggesting alterative therapeutic approaches to treat fear disorders.


Assuntos
Extinção Psicológica , Medo , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Masculino , Camundongos , Neuregulina-1 , Plasticidade Neuronal/fisiologia , Parvalbuminas , Córtex Pré-Frontal/fisiologia , Receptor ErbB-4
6.
Acta Pharmacol Sin ; 43(3): 624-633, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34163023

RESUMO

Vascular calcification (VC) is characterized by pathological depositions of calcium and phosphate in the arteries and veins via an active cell-regulated process, in which vascular smooth muscle cells (VSMCs) transform into osteoblast/chondrocyte-like cells as in bone formation. VC is associated with significant morbidity and mortality in chronic kidney disease (CKD) and cardiovascular disease, but the underlying mechanisms remain unclear. In this study we investigated the role of large-conductance calcium-activated potassium (BK) channels in 3 experimental VC models. VC was induced in vascular smooth muscle cells (VSMCs) by ß-glycerophosphate (ß-GP), or in rats by subtotal nephrectomy, or in mice by high-dosage vitamin D3. We showed that the expression of BK channels in the artery of CKD rats with VC and in ß-GP-treated VSMCs was significantly decreased, which was functionally confirmed by patch-clamp recording. In ß-GP-treated VSMCs, BK channel opener NS1619 (20 µM) significantly alleviated VC by decreasing calcium content and alkaline phosphatase activity. Furthermore, NS1619 decreased mRNA expression of ostoegenic genes OCN and OPN, as well as Runx2 (a key transcription factor involved in preosteoblast to osteoblast differentiation), and increased the expression of α-SMA protein, whereas BK channel inhibitor paxilline (10 µM) caused the opposite effects. In primary cultured VSMCs from BK-/- mice, BK deficiency aggravated calcification as did BK channel inhibitor in normal VSMCs. Moreover, calcification was more severe in thoracic aorta rings of BK-/- mice than in those of wild-type littermates. Administration of BK channel activator BMS191011 (10 mg· kg-1 ·d-1) in high-dosage vitamin D3-treated mice significantly ameliorated calcification. Finally, co-treatment with Akt inhibitor MK2206 (1 µM) or FoxO1 inhibitor AS1842856 (3 µM) in calcified VSMCs abrogated the effects of BK channel opener NS1619. Taken together, activation of BK channels ameliorates VC via Akt/FoxO1 signaling pathways. Strategies to activate BK channels and/or enhance BK channel expression may offer therapeutic avenues to control VC.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Calcificação Vascular/patologia , Fosfatase Alcalina/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Benzimidazóis/farmacologia , Colecalciferol/farmacologia , Modelos Animais de Doenças , Glicerofosfatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrectomia , Osteocalcina/efeitos dos fármacos , Osteopontina/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
7.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731682

RESUMO

Twenty-seven L-shaped ortho-quinone analogs were designed and synthesized using a one pot double-radical synthetic strategy followed by removing methyl at C-3 of the furan ring and introducing a diverse side chain at C-2 of the furan ring. The synthetic derivatives were investigated for their cytotoxicity activities against human leukemia cells K562, prostate cancer cells PC3, and melanoma cells WM9. Compounds TB1, TB3, TB4, TB6, TC1, TC3, TC5, TC9, TC11, TC12, TC14, TC15, TC16, and TC17 exhibited a better broad-spectrum cytotoxicity on three cancer cells. TB7 and TC7 selectively displayed potent inhibitory activities on leukemia cells K562 and prostate cancer cells PC3, respectively. Further studies indicated that TB3, TC1, TC3, TC7, and TC17 could significantly induce the apoptosis of PC3 cells. TC1 and TC17 significantly induced apoptosis of K562 cells. TC1, TC11, and TC14 induced significant apoptosis of WM9 cells. The structure-activity relationships evaluation showed that removing methyl at C-3 of the furan ring and introducing diverse side chains at C-2 of the furan ring is an effective strategy for improving the anticancer activity of L-shaped ortho-quinone analogs.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citotoxinas , Neoplasias , Quinonas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células K562 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Quinonas/síntese química , Quinonas/química , Quinonas/farmacologia , Relação Estrutura-Atividade
8.
Molecules ; 24(9)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064088

RESUMO

Flavonoids are well-characterized polyphenolic compounds with pharmacological and therapeutic activities. However, most flavonoids have not been developed into clinical drugs, due to poor bioavailability. Herein, we report a strategy to increase the drugability of flavonoids by constructing C(sp2)-O bonds and stereo- as well as regioselective alkenylation of hydroxyl groups of flavonoids with ethyl-2,3-butadienoate allenes. Twenty-three modified flavonoid derivatives were designed, synthesized, and evaluated for their anti-cancer activities. The results showed that compounds 4b, 4c, 4e, 5e, and 6b exhibited better in vitro inhibitory activity against several cancer cell lines than their precursors. Preliminary structure-activity relationship studies indicated that, in most of the cancer cell lines evaluated, the substitution on position 7 was essential for increasing cytotoxicity. The results of this study might facilitate the preparation or late-stage modification of complex flavonoids as anti-cancer drug candidates.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Éteres/química , Flavonoides/síntese química , Flavonoides/uso terapêutico , Alcadienos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
9.
Life Sci ; 86(5-6): 170-7, 2010 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20006627

RESUMO

AIMS: We previously reported that minocycline attenuates acute brain injury and inflammation after focal cerebral ischemia, and this is partly mediated by inhibition of 5-lipoxygenase (5-LOX) expression. Here, we determined the protective effect of minocycline on chronic ischemic brain injury and its relation with the inhibition of 5-LOX expression after focal cerebral ischemia. MAIN METHODS: Focal cerebral ischemia was induced by 90 min of middle cerebral artery occlusion followed by reperfusion for 36 days. Minocycline (45 mg/kg) was administered intraperitoneally 2h and 12h after ischemia and then every 12h for 5 days. Sensorimotor function was evaluated 1-28 days after ischemia and cognitive function was determined 30-35 days after ischemia. Thereafter, infarct volume, neuron density, astrogliosis, and 5-LOX expression in the brain were determined. KEY FINDINGS: Minocycline accelerated the recovery of sensorimotor and cognitive functions, attenuated the loss of neuron density, and inhibited astrogliosis in the boundary zone around the ischemic core, but did not affect infarct volume. Minocycline significantly inhibited the increased 5-LOX expression in the proliferated astrocytes in the boundary zone, and in the macrophages/microglia in the ischemic core. SIGNIFICANCE: Minocycline accelerates functional recovery in the chronic phase of focal cerebral ischemia, which may be partly associated with the reduction of 5-LOX expression.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Inibidores de Lipoxigenase , Minociclina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Agnosia/etiologia , Agnosia/prevenção & controle , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/patologia , Encéfalo/enzimologia , Encéfalo/patologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/fisiopatologia , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Imuno-Histoquímica , Injeções Intraperitoneais , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/patologia , Minociclina/administração & dosagem , Minociclina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
10.
Acta Pharmacol Sin ; 28(6): 763-72, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17506934

RESUMO

AIM: To determine whether the anti-inflammatory effect of minocycline on postischemic brain injury is mediated by the inhibition of 5-lipoxygenase (5-LOX) expression and enzymatic activation in rats. METHODS: Focal cerebral ischemia was induced for 30 min with middle cerebral artery occlusion, followed by reperfusion. The ischemic injuries, endogenous IgG exudation, the accumulation of neutrophils and macrophage/microglia, and 5-LOX mRNA expression were determined 72 h after reperfusion. 5-LOX metabolites (leukotriene B4 and cysteinyl leukotrienes) were measured 3 h after reperfusion. RESULTS: Minocycline (22.5 and 45 mg/kg, ip, for 3 d) attenuated ischemic injuries, IgG exudation, and the accumulation of neutrophils and macrophage/microglia 72 h after reperfusion. It also inhibited 5-LOX expression 72 h after reperfusion and the production of leukotrienes 3 h after reperfusion. CONCLUSION: Minocycline inhibited postischemic brain inflammation, which might be partly mediated by the inhibition of 5-LOX expression and enzymatic activation.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Isquemia Encefálica , Encéfalo/efeitos dos fármacos , Encefalite , Ativação Enzimática/efeitos dos fármacos , Inibidores de Lipoxigenase , Animais , Antibacterianos/farmacologia , Araquidonato 5-Lipoxigenase/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encefalite/metabolismo , Encefalite/patologia , Infarto da Artéria Cerebral Média , Masculino , Minociclina/farmacologia , Ratos , Ratos Sprague-Dawley
11.
Neurosci Lett ; 412(1): 78-83, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17196746

RESUMO

Cysteinyl leukotrienes (CysLTs) induce inflammatory responses mediated by activating CysLT(1) and CysLT(2) receptors. We have recently reported that CysLT(1) receptor expression is increased in rat brain after focal cerebral ischemia and the increased expression is spatio-temporally related to acute neuronal injury and late astrocyte proliferation. Here we report spatio-temporal expression of CysLT(2) receptor mRNA in rat brain after focal cerebral ischemia induced by 30min of middle cerebral artery occlusion. We found that the neuron density was gradually decreased or disappeared in the ischemic core and boundary zone during 14 days after reperfusion, and the astrocyte population in the boundary zone was increased 3-14 days after reperfusion. In the ischemic core, the expression of CysLT(2) receptor mRNA was increased at 6, 12 and 24h and then recovered at 3, 7 and 14 days after reperfusion. In the boundary zone, the expression was significantly increased 3, 7 and 14 days after reperfusion. The results suggest that CysLT(2) receptor may be related to the acute neuronal injury and late astrocyte proliferation in the ischemic brain.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Receptores de Leucotrienos/metabolismo , Animais , Masculino , Proteínas de Membrana/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Leucotrienos/genética , Reperfusão , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo
12.
Biochem Biophys Res Commun ; 350(2): 399-404, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17010308

RESUMO

Cysteinyl leukotrienes (including LTC(4), LTD(4), and LTE(4)), potent inflammatory mediators, can induce brain-blood barrier (BBB) disruption and brain edema. These reactions are mediated by their receptors, CysLT(1) and CysLT(2) receptors. On the other hand, aquaporin 4 (AQP4) primarily modulates brain water homeostasis and edema after various injuries. Here, we aimed to determine whether AQP4 is involved in LTD(4)-induced brain edema. LTD(4) (1ng in 0.5mul PBS) microinjection into the cortex increased endogenous IgG exudation (BBB disruption) and water content (brain edema), and enhanced AQP4 expression in mouse brain. The selective CysLT(1) receptor antagonist pranlukast inhibited the IgG exudation, but not the increased water content and AQP4 expression induced by LTD(4). In the cultured rat astrocytes, LTD(4) (10(-9)-10(-7)M, for 24h) similarly enhanced AQP4 expression. The enhanced AQP4 expression was inhibited by Bay u9773, a non-selective CysLT(1)/CysLT(2) receptor antagonist, but not by pranlukast. LTD(4) (10(-9)-10(-7)M) also induced the mRNA expression of CysLT(2) (not CysLT(1)) receptor in astrocytes. These results indicate that LTD(4) modulates brain edema; CysLT(1) receptor mediates vasogenic edema while CysLT(2) receptor may mediate cytotoxic edema via up-regulating AQP4 expression.


Assuntos
Aquaporina 4/biossíntese , Edema Encefálico/induzido quimicamente , Leucotrieno D4/toxicidade , Proteínas de Membrana/metabolismo , Receptores de Leucotrienos/metabolismo , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/genética , Edema Encefálico/metabolismo , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Leucotrienos/biossíntese , Receptores de Leucotrienos/genética
13.
Eur J Pharmacol ; 549(1-3): 35-40, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16973153

RESUMO

We have reported the neuroprotective effect of cysteinyl leukotriene receptor 1 (CysLT1) antagonists on cerebral ischemia. Here, we further determined the protective effect of pranlukast, a CysLT1 receptor antagonist, on brain cold injury in mice. Brains were injured by placing a cooled metal probe on the skull surface for 30 s. We found that pranlukast significantly reduced cold-induced lesion volume (0.3 mg/kg) and the percentage increase in lesioned hemisphere volume (0.03-0.3 mg/kg) 24 h after injury, but did not show any effect 72 h after injury. Pranlukast also significantly inhibited neuron loss 24 h (0.1 mg/kg) and 72 h (0.1-0.3 mg/kg) after injury, and decreased the density of degenerated neurons 24 h (0.01-0.3 mg/kg) and 72 h (0.03-0.3 mg/kg) after injury. In addition, pranlukast (0.1-0.3 mg/kg) significantly reduced endogenous IgG exudation both 24 h and 72 h after injury. Thus, this study indicates the protective effect of pranlukast on brain cold injury.


Assuntos
Lesões Encefálicas/prevenção & controle , Cromonas/farmacologia , Temperatura Baixa/efeitos adversos , Antagonistas de Leucotrienos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Contagem de Células , Relação Dose-Resposta a Droga , Exsudatos e Transudatos/efeitos dos fármacos , Exsudatos e Transudatos/metabolismo , Imunoglobulina G/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/patologia , Receptores de Leucotrienos
14.
Acta Pharmacol Sin ; 27(9): 1103-10, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16923329

RESUMO

AIM: To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. METHODS: Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. RESULTS: Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. CONCLUSION: Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Cafeicos/farmacologia , Ataque Isquêmico Transitório , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/patologia , Cisteína/metabolismo , Infarto da Artéria Cerebral Média/complicações , Ataque Isquêmico Transitório/etiologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Leucotrieno B4/metabolismo , Leucotrienos/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
Life Sci ; 79(17): 1645-56, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16824548

RESUMO

The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.


Assuntos
Araquidonato 5-Lipoxigenase/biossíntese , Encéfalo/enzimologia , Ataque Isquêmico Transitório/enzimologia , Traumatismo por Reperfusão/enzimologia , Doença Aguda , Animais , Araquidonato 5-Lipoxigenase/genética , Arteriopatias Oclusivas/metabolismo , Astrócitos/enzimologia , Astrócitos/patologia , Encéfalo/patologia , Proliferação de Células , Doença Crônica , Modelos Animais de Doenças , Ativação Enzimática , Expressão Gênica , Técnicas Imunoenzimáticas , Ataque Isquêmico Transitório/patologia , Leucotrienos/metabolismo , Masculino , Neurônios/enzimologia , Neurônios/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Fatores de Tempo
16.
Neuropathology ; 26(2): 99-106, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16708542

RESUMO

5-Lipoxygenase (5-LOX) is a key enzyme in the metabolism of arachidonic acid to leukotrienes. The levels of leukotrienes increase after brain injury and when tumors are present. It has been reported that 5-LOX is widely expressed in the brain and that 5-LOX inhibition provides neuroprotection. However, there is still no information available for the expression patterns of 5-LOX in human brain following trauma or with astrocytomas. We investigated its expression patterns by immunohistochemistry. We found that 5-LOX is normally expressed in neurons and glial cells. In neurons, it was expressed in two patterns: in the cytosol and nucleus or only in the cytosol. In traumatic brain injury, 5-LOX expression increased in glial cells and neutrophils. Double-labeling immunohistochemistry showed that part of the 5-LOX-positive glial cells were GFAP positive. No 5-LOX expression was found in brain microvessel endothelia, except in the regenerated endothelia of a patient 8 days following brain trauma. Furthermore, 5-LOX expression increased and showed a granular pattern in high-grade (grade III/IV) astrocytoma. These results indicate that 5-LOX has multiple expression patterns, and can be induced by brain injury, which implies that 5-LOX might have pathophysiological roles in the human brain.


Assuntos
Araquidonato 5-Lipoxigenase/biossíntese , Astrocitoma/metabolismo , Lesões Encefálicas/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , Neurônios/metabolismo
17.
Brain Res ; 1085(1): 57-67, 2006 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-16574083

RESUMO

Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation.


Assuntos
Araquidonato 5-Lipoxigenase/fisiologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Minociclina/farmacologia , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Células PC12/efeitos dos fármacos , Análise de Variância , Animais , Western Blotting/métodos , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Flavanonas/farmacologia , Imuno-Histoquímica/métodos , Ketamina/farmacologia , Células PC12/patologia , Ratos , Sais de Tetrazólio , Tiazóis , Fatores de Tempo
18.
Acta Pharmacol Sin ; 27(3): 282-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16490162

RESUMO

AIM: To determine whether pranlukast, a cysteinyl leukotriene receptor-1 antagonist, exerts an anti-inflammatory effect on focal cerebral ischemia in mice. METHODS: Focal cerebral ischemia in mice was induced by permanent middle cerebral artery occlusion (MCAO). In addition to neurological deficits, infarct volume, degenerated neurons and endogenous IgG exudation, we detected accumulation of neutrophils and macrophage/microglia in the ischemic brain tissue 72 h after MCAO. Pranlukast was ip injected 30 min before and after MCAO. RESULTS: Pranlukast significantly attenuated neurological deficits, infarct volume, neuron degeneration and IgG exudation. Importantly, pranlukast (0.01 and 0.1 mg/kg) inhibited myeloperoxidase-positive neutrophil, but not CD11b-positive macrophage/microglial accumulation in the ischemic cortical tissue. CONCLUSION: Pranlukast exerts an anti-inflammatory effect on focal cerebral ischemia in the subacute phase that is limited to neutrophil recruitment through the disrupted blood-brain barrier.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/patologia , Encéfalo/patologia , Cromonas/farmacologia , Neutrófilos , Animais , Isquemia Encefálica/etiologia , Antígeno CD11b/metabolismo , Imunoglobulina G/metabolismo , Infarto da Artéria Cerebral Média/complicações , Antagonistas de Leucotrienos/farmacologia , Macrófagos/imunologia , Masculino , Camundongos , Microglia/imunologia , Fármacos Neuroprotetores/farmacologia , Neutrófilos/enzimologia , Peroxidase/metabolismo
19.
Brain Res ; 1053(1-2): 116-25, 2005 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16051204

RESUMO

We have recently reported the neuroprotective effect of pranlukast (ONO-1078), a cysteinyl leukotriene receptor-1 (CysLT1) antagonist, on cerebral ischemia in rats and mice. In this study, we further determined whether the effect of pranlukast is long lasting and related to the formation of a glial scar in cerebral ischemic mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO). After ischemia, pranlukast (0.1 mg/kg) was injected intraperitoneally for 5 consecutive days. Neurological deficits and sensorimotor function were determined during 70 days after ischemia. Brain lesion and glial scar formation were detected at the end of the experiment. Pranlukast did not reduce mortality, but significantly improved neurological deficits and promoted sensorimotor recovery during 70 days. At the end of the experiment, pranlukast significantly reduced lesion volume, and increased neuron densities in the cortex and hippocampal CA1 region in the ischemic hemispheres. Importantly, pranlukast also remarkably reduced the thickness of a scar wall in the ischemic hemispheres. These findings indicate that pranlukast has a long-lasting protective effect on focal cerebral ischemia in mice, and inhibit the ischemia-induced glial scar formation, providing further evidence of the therapeutic potential of pranlukast in the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Cromonas/uso terapêutico , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Análise de Variância , Animais , Comportamento Animal , Isquemia Encefálica/complicações , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Contagem de Células/métodos , Cromonas/farmacologia , Doença Crônica/tratamento farmacológico , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Neuroglia/patologia , Fármacos Neuroprotetores/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Fatores de Tempo , Cloreto de Tolônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA