Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065062

RESUMO

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Assuntos
Leucemia , Síndromes Mielodisplásicas , Neoplasias , Metilação de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicas/genética , Neoplasias/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Metilação de RNA/genética
2.
Acc Chem Res ; 56(23): 3417-3427, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37965760

RESUMO

More than 170 different types of chemical modifications have been identified on diverse types of RNA, collectively known as the epitranscriptome. Among them, N6-methyladenine (m6A), 5-methylcytosine (m5C), N1-methyladenine (m1A), and N7-methylguanosine (m7G) as the ubiquitous post-transcriptional modification are widely involved in regulating the metabolic processes such as RNA degradation, translation, stability, and export, mediating important physiological and pathological processes such as stress regulation, immune response, development, and tumorigenesis. Recently, the regulatory role of RNA modification during developmental processes is getting more attention. Therefore, the development of low-input even single-cell and high-resolution sequencing technologies is crucial for the exploration of the regulatory roles of RNA modifications in these important biological events of trace samples.This account focuses on the roles of RNA modifications in various developmental processes. We describe the distribution characteristics of various RNA modifications, catalytic enzymes, binding proteins, and the development of sequencing technologies. RNA modification is dynamically reversible, which can be catalyzed by methyltransferases and eliminated by demethylases. RNA m6A is the most abundant post-transcriptional modification on eukaryote mRNA, which is mainly concentrated near the stop codon, and involves in RNA metabolism regulation. RNA m5C, another most studied RNA modification, has been identified in a various of organisms and RNA species, mainly enriched in the regions downstream of translation initiation sites and broadly distributes across the whole coding sequence (CDS) in mammalian mRNAs. RNA m1A, with a lower abundance than m6A, is widely distributed in various RNA types, mainly locates in the 5' untranslated region (5'UTR) of mRNA and regulates translation. RNA m7G, one of the most common RNA modifications in eukaryotes, has been identified at cap regions and internal positions of RNAs and recently gained considerable attention.Thanks to the development of sequencing technology, m6A has been found to regulate the tumorigenic process, including tumor proliferation, invasion, and metastasis by modulating oncogenes and tumor suppressor genes, and affect oocyte maturation and embryonic development through regulating maternal and zygotic genes. m5C related proteins have been identified to participate in embryonic development, plant growth, and neural stem cell differentiation in a m5C dependent manner. m1A also has been revealed to be involved in these developmental processes. m7G dysregulation mainly involves in neurodevelopmental disorders and neurodegenerative diseases.Collectively, we summarized the gradually exhibited roles of RNA methylation during development, and discussed the possibility of RNA modifications as candidate biomarkers and potential therapeutic targets. The technological development is anticipated as the major driving force to expand our knowledge in this field.


Assuntos
Metiltransferases , RNA , Animais , Metilação , RNA/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Diferenciação Celular , Processamento Pós-Transcricional do RNA , Mamíferos/genética , Mamíferos/metabolismo
3.
Pest Manag Sci ; 79(12): 5374-5386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656744

RESUMO

BACKGROUND: Peanut stem rot caused by Sclerotium rolfsii is an epidemic disastrous soil-borne disease. Recently, natural products tend to be safe alternative antifungal agents to combat pathogens. RESULTS: This work determined the preliminary antifungal activity of 29 essential oils against S. rolfsii and found that Ligusticum chuanxiong essential oil (LCEO) showed the best antifungal activity, with an EC50 value of 81.79 mg L-1 . Sixteen components (98.78%) were identified in LCEO by gas chromatography-mass spectrometry analysis, the majority by volume comprising five phthalides (93.14%). Among these five phthalides, butylidenephthalide was the most effective compound against S. rolfsii. Butylidenephthalide not only exhibited favorable in vitro antifungal activity against the mycelial growth, sclerotia production and germination of S. rolfsi, but also presented efficient in vivo efficacy in the control of peanut stem rot. Seven days after application in the glasshouse, the protective and curative efficacy of butylidenephthalide at 300 mg L-1 (52.02%, 44.88%) and LCEO at 1000 mg L-1 (49.60%, 44.29%) against S. rolfsii were similar to that of the reference fungicide polyoxin at 300 mg L-1 (54.61%, 48.28%). Butylidenephthalide also significantly decreased the oxalic acid and polygalacturonase content of S. rolfsii, suggesting a decreased infection ability on plants. Results of biochemical actions indicated that butylidenephthalide did not have any effect on the cell membrane integrity and permeability but significantly decreased nutrient contents, disrupted the mitochondrial membrane, inhibited energy metabolism and induced reactive oxygen species (ROS) accumulation of S. rolfsii. CONCLUSION: Our results could provide an important reference for understanding the application potential and mechanisms of butylidenephthalide in the control of S. rolfsii. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Ligusticum , Óleos Voláteis , Antifúngicos/química , Ligusticum/metabolismo , Arachis
4.
Oxid Med Cell Longev ; 2023: 9069645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733419

RESUMO

Patrinia scabiosaefolia, as traditional food and medicine plant, was used to treat appendicitis, enteritis, and hepatitis for thousand years in China. Patrinoside and patrinoside A isolated from P. scabiosaefolia could significantly improve insulin resistance (IR) by activating PI-3 K/AKT signaling pathway in our previous study. Since IR is closely related to inflammation, their anti-inflammatory activities in RAW264.7 inflammatory model induced by LPS and in 3 T3-L1 IR inflammatory model induced by TNF-α were evaluated to identify whether the effects on improving IR related to anti-inflammatory activity. In RAW264.7 cells, patrinoside and patrinoside A significantly inhibited the transcription and secretion of inflammatory mediators NO, TNF-α, and IL-6. Western blot analysis showed that the significant inhibition of phosphorylation of IκB and P65 and P38, ERK and JNK suggested that the effects were exerted through NF-κB pathway and MAPK pathway. In 3 T3-L1 cells, patrinoside and patrinoside A also inhibited the activation of NF-κB and MAPK pathways through inhibiting the transcriptions of inflammatory cytokines IL-6 and chemokines MCP-1 and MIP-1α. These events resulted in the inhibition of macrophages migration to adipocytes. In addition, patrinoside and patrinoside A ameliorated oxidative stress by inhibiting ROS release in LPS-stimulated RAW264.7 cells. In conclusion, patrinoside and patrinoside A could active PI-3 K/AKT pathway, inhibit NF-κB pathway, MAPK pathway, and improve oxidative stress, which showed multipathways on improving IR. These results provided the scientific basis for material basis and mechanism on improving IR of P. scabiosaefolia.


Assuntos
Resistência à Insulina , Patrinia , Animais , Camundongos , NF-kappa B/metabolismo , Patrinia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo
5.
Fitoterapia ; 165: 105423, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608711

RESUMO

Growing in regions of Asia and North America, Patrinia scabiosaefolia is a wild vegetable and herb that has demonstrated health-promoting properties. Iridoids are one of the most bioactive phytochemicals in P. scabiosaefolia but the in-depth study is scarce. Herein we reported the separation and characterization of nine iridoids (compounds 1-9) from P. scabiosaefolia, and two compounds (2 and 6) were new. All the structures of the nine iridoids were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Compound 2 is a five-member ring iridoid, reminiscent of a broken C-1 and C-2 bond. Compound 6 has a typical monoene valerian iridoid, but the 5-deoxyglucose moiety at C-11 position is uncommon in this genus. The anti-diabetic evaluation of the isolated compounds revealed that compounds 1, 2, and 9 significantly increased the glucose absorption in 3 T3-L1 cells (P < 0.01). Further mechanism investigations have demonstrated that compound 1 promoted glucose uptake in dexamethasone-treated 3 T3-L1 adipocytes by activating PI3K/Akt signaling pathway. The expression of GLUT4 mRNA and protein was also upregulated. These results provide scientific references for the potential use of P. scabiosaefolia as a functional food to manage hyperglycemia.


Assuntos
Iridoides , Patrinia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Patrinia/química , Patrinia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipoglicemiantes/farmacologia , Estrutura Molecular , Transdução de Sinais
6.
Plant Physiol ; 191(1): 660-678, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269175

RESUMO

Herbivore-associated molecular patterns (HAMPs) enable plants to recognize herbivores and may help plants adjust their defense responses. Here, we report on herbivore-induced changes in a protein disulfide isomerase (PDI) widely distributed across arthropods. PDI from the spider mite Tetranychus evansi (TePDI), a mesophyll-feeding agricultural pest worldwide, triggered immunity in multiple Solanaceae plants. TePDI-mediated cell death in Nicotiana benthamiana required the plant signaling proteins SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90), but was suppressed by spider mite effectors Te28 and Te84. Moreover, PDIs from phylogenetically distinct herbivorous and nonherbivorous arthropods triggered plant immunity. Finally, although PDI-induced plant defenses impaired the performance of spider mites on plants, RNAi experiments revealed that PDI genes are essential for the survival of mites and whiteflies. Our findings indicate that plants recognize evolutionarily conserved HAMPs to activate plant defense and resist pest damage, pointing to opportunities for broad-spectrum pest management.


Assuntos
Herbivoria , Tetranychidae , Animais , Isomerases de Dissulfetos de Proteínas/genética , Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Tetranychidae/fisiologia
7.
Quant Imaging Med Surg ; 12(8): 4286-4295, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919056

RESUMO

Background: It has been hypothesized that an absolute quantitative dynamic susceptibility contrast (DSC) cerebral perfusion-weighted imaging (PWI) technique based on self-calibrated echo-planar imaging (EPI) could be a reliable measurement of quantitative cerebral blood flow (qCBF) and quantitative cerebral blood volume (qCBV). This study aimed to investigate the clinical value of this technique in offering a unique insight into ischemic stroke (IS) pathophysiology and improving the sensitivity of IS diagnosis. Methods: A total of 14 patients with IS who underwent routine magnetic resonance imaging (MRI) and Self-CALibrated EPI Perfusion-Weighted Imaging (SCALE-PWI) scanning were prospectively recruited as a consecutive convenience sample. qCBF and qCBV maps were processed immediately online after the scan. Then, 2 radiologists independently drew the region of interest (ROI) of the infarct core, ischemic penumbra, and the contralateral normal tissues on each map for the statistical analyses. The paired-samples t-test, Wilcoxon signed-rank test, independent-samples t-test, and receiver operating characteristic (ROC) curve were performed. A value of P<0.05 was considered statistically significant with 95% confidence intervals (CI). Results: All the values of qCBF and qCBV in the lesions were lower than those in the contralateral normal tissues (all P<0.05). The values of qCBF and qCBV in the infarct core were lower than those in the ischemic penumbra (mean values: 16.42 vs. 21.54 mL/100 g/min, P=0.013; 1.23 vs. 1.47 mL/100 g, P=0.049, respectively). The qCBF threshold of the infarct core was 18.18 mL/100 g/min (sensitivity, 71.40%; specificity, 64.30%) and the qCBF threshold of the ischemic penumbra was 28.09 mL/100 g/min (sensitivity, 78.60%; specificity, 85.70%). Conclusions: Different from the previous semi-quantitative measurement, the SCALE-PWI technique has the potential to provide absolute quantitative hemodynamic information which may be used to detect the infarct core and ischemic penumbra in a relatively short scan time.

8.
Talanta ; 247: 123554, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653859

RESUMO

Specific and cost-effective methodologies for human papillomavirus (HPV) gene detection are significant for clinical diagnosis and cancer control. Herein, a label-free and fluorimetric/colorimetric dual-mode sensing strategy was developed for the quantitative determination of HPV DNA based on the integration of fluorescent DNA-silver nanoclusters (DNA/AgNCs) and G-quadruplex/hemin DNAzyme. The fluorimetric sensing strategy was based on the phenomena that the fluorescence enhancement of DNA/AgNCs obtained in proximity of guanine-rich DNA sequences and the photoinduced electron transfer (PET) effect between the electron donor (DNA/AgNCs) and electron receptor (G-quadruplex/hemin). The colorimetric sensing strategy was relied on the peroxidase-like activity of G-quadruplex/hemin DNAzyme. By integrating DNA/AgNCs and DNAzyme, this dual-mode strategy could produce two independent signals to improve the analytical diversity and accuracy. Under optimized conditions, the fluorimetry and colorimetry of the strategy displayed a linear range of 0.01-4 and 0.02-4 nM, with the low detection limit of 2.3 and 5.2 pM, respectively. Additionally, this dual-mode strategy has been successfully applied to HPV DNA analysis in different real samples with excellent results. Moreover, the sensing platform could be developed for different HPVs DNA assay by only adjusting the recognition sequence, which provided a universal strategy for various kinds of virus analysis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Infecções por Papillomavirus , Técnicas Biossensoriais/métodos , Colorimetria/métodos , DNA/genética , DNA Catalítico/metabolismo , Hemina , Humanos , Nanoestruturas , Prata
9.
Lipids Health Dis ; 21(1): 54, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705996

RESUMO

BACKGROUND: MicroRNAs (MiRNAs) are known to participate in preadipocyte differentiation, but the manner in which miR-146a-5p participates in this process remains unclear. This study was performed to examine the participation of miR-146a-5p in 3T3-L1 cell differentiation. MATERIAL AND METHODS: miR-146a-5p expression was upregulated and down-regulated to examine effects on 3T3-L1 cell differentiation. Bioinformatics analysis was performed to predict its target genes, and the signaling pathway it regulates was identified by qRT-PCR and Western blotting. The expression of miR-146a-5p in epididymal adipose tissue from obese mice and in an obese mouse adipose cell model was examined by qRT-PCR. RESULTS: 3T3-L1 cells differentiated into mature adipocytes successfully, as verified by increased areas of intracellular lipid droplets and elevated expression of mature adipocyte markers, and these cells had elevated miR-146a-5p expression. The intracellular lipid droplet and triglyceride contents and the expression of mature adipocyte markers were significantly increased in miR-146a-5p-overexpressing 3T3-L1 cells and markedly decreased in miR-146a-5p-inhibited 3T3-L1 cells. ErbB4 was a predicted target gene of miR-146a-5p. In miR-146a-5p-overexpressing 3T3-L1 cells, ErbB4 expression and ERK1/2 phosphorylation were decreased and the expression of PPAR-γ was increased; the opposite was observed in miR-146a-5p-inhibited 3T3-L1 cells. In addition, miR-146a-5p expression was significantly increased in the mouse epididymal adipose tissue and adipose cell model. CONCLUSIONS: Upregulated miR-146a-5p expression was related to 3T3-L1 cell differentiation. MiR-146a-5p promoted 3T3-L1 cell differentiation by targeting ErbB4 and via the ERK1/2/PPAR-γ signaling pathway.


Assuntos
MicroRNAs/metabolismo , PPAR gama , Receptor ErbB-4 , Células 3T3-L1 , Adipogenia , Animais , Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Receptor ErbB-4/metabolismo , Transdução de Sinais
10.
Pestic Biochem Physiol ; 184: 105125, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715063

RESUMO

Phytophthora capsici is a highly destructive oomycete of vegetables; its management is challenging due to its broad host range, rapid dispersion, resilient spores and severe fungicide resistance. Identifying an effective alternative fungicide is important for the control of P. capsici. 1,6-O,O-diacetylbritannilactone (ABLOO), one of the secondary metabolites of Inula Britannica, showed a favorable inhibitory activity against P. capsici at different developmental stages, with a sensitivity order as follows: sporangia formation (30.45 mg/L) > zoospore discharge (77.69 mg/L) > mycelial growth (93.18 mg/L) > cystospore germination (591.48 mg/L). To investigate the mode of action of ABLOO in P. capsici, iTRAQ-based quantitative proteomic analysis was performed by comparing the expression levels of proteins in the control and ABLOO-treated (400 mg/L, inhibition rate of 80%) mycelial groups. A total of 65 downregulated and 75 upregulated proteins were identified in the proteomic analysis. Functional enrichment analyses showed that proteins with transmembrane transport activity were significantly inhibited, while proteins involved in energy production were significantly increased, including proteins involved in ubiquinone and other terpenoid-quinone biosynthesis, oxidative phosphorylation, and glycolysis/gluconeogenesis. The morphological results indicated that ABLOO treatment could decrease the thickness of the cell walls of P. capsici mycelia. Correspondingly, biochemical results showed that ABLOO treatment reduced the ß-1,3-glucan contents (the key component of the cell wall of P. capsici) and increased the cell membrane permeability of P. capsici. ABLOO may exhibit antioomycete activity by destroying the cell membrane of P. capsici. This study provides new evidence regarding the inhibitory mechanisms of ABLOO against P. capsici.


Assuntos
Fungicidas Industriais , Phytophthora , Fungicidas Industriais/farmacologia , Lactonas , Doenças das Plantas/prevenção & controle , Plantas , Proteínas , Proteômica/métodos , Sesquiterpenos
11.
BMC Musculoskelet Disord ; 23(1): 386, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473639

RESUMO

BACKGROUND: Measurement of the posterior tibial slope (PTS) angle has important applications in total knee replacement surgery, high tibial osteotomy, and anterior cruciate ligament reconstruction. This study aimed to determine the mean PTS of knee joints in healthy Chinese adults, and provide data to guide knee surgery in China. METHODS: A retrospective analysis of 1257 (n = 1233, 50.4% male) plain X-ray films of participants aged 25-59 years was performed. The picture archiving and communication system was used for PTS measurement. The PTS was defined as the angle between the vertical line of the tangent of the anterior tibial cortex of the proximal tibia, and the tangent line of the tibial cortex. Two imaging physicians conducted the PTS measurements independently, and both the inter- and intraclass correlation coefficients (ICCs) were calculated. RESULTS: The mean PTS value was 7.68 ± 3.84° (range: 0-21°). The left PTS was significantly smaller in males than in females (7.22 ± 3.89 vs 8.05 ± 3.60; P = 0.005). Additionally, the PTS in participants aged 25-29 years was significantly larger than that in the other age groups (Left side: 8.64 ± 3.73 vs 6.92 ± 3.42, 7.42 ± 3.75, 7.53 ± 3.98; P <  0.001 and Right side: 8.68 ± 3.84 vs 7.48 ± 4.21, 7.13 ± 3.64, 7.66 ± 3.80; P = 0.004). There were no significant differences in PTS between the left and right sides. Two-way analysis of variance suggested that the differences in PTS between age groups were not affected by sex. The interobserver ICC was 0.91 (95% confidence interval [CI]: 0.85-0.94), and the intraobserver ICC was 0.90 (95% CI: 0.82-0.94). CONCLUSIONS: This study demonstrated that there were significant differences in PTS based on sex and age, highlighting the need to provide individualized treatment for knee surgery. It provided valuable information regarding the normal PTS values in Chinese adults and presented regionalised data to guide knee surgery.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Artroplastia do Joelho , Adulto , Artroplastia do Joelho/métodos , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Masculino , Estudos Retrospectivos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
12.
IEEE J Biomed Health Inform ; 26(8): 4056-4066, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35417359

RESUMO

Ultrasonic B-mode imaging offers non-invasive and real-time monitoring of thermal ablation treatment in clinical use, however it faces challenges of moderate lesion-normal contrast and detection accuracy. Quantitative ultrasound imaging techniques have been proposed as promising tools to evaluate the microstructure of ablated tissue. In this study, we introduced Shannon entropy, a non-model based statistical measurement of disorder, to quantitatively detect and monitor microwave-induced ablation in porcine livers. Performance of typical Shannon entropy (TSE), weighted Shannon entropy (WSE), and horizontally normalized Shannon entropy (hNSE) were explored and compared with conventional B-mode imaging. TSE estimated from non-normalized probability distribution histograms was found to have insufficient discernibility of different disorder of data. WSE that improves from TSE by adding signal amplitudes as weights obtained area under receiver operating characteristic (AUROC) curve of 0.895, whereas it underestimated the periphery of lesion region. hNSE provided superior ablated area prediction with the correlation coefficient of 0.90 against ground truth, AUROC of 0.868, and remarkable lesion-normal contrast with contrast-to-noise ratio of 5.86 which was significantly higher than other imaging methods. Data distributions shown in horizontally normalized probability distribution histograms indicated that the disorder of backscattered envelope signal from ablated region increased as treatment went on. These findings suggest that hNSE imaging could be a promising technique to assist ultrasound guided percutaneous thermal ablation.


Assuntos
Micro-Ondas , Ablação por Radiofrequência , Animais , Entropia , Fígado/diagnóstico por imagem , Fígado/patologia , Fígado/cirurgia , Micro-Ondas/uso terapêutico , Suínos , Ultrassonografia/métodos
13.
Cell Cycle ; 21(14): 1532-1542, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343377

RESUMO

As part of the development of an infectious bursal disease virus (IBDV) subunit vaccine, this study was designed to improve the expression of highly soluble VP2-LS3 (Haemophilus parasuis lumazine synthase 3, LS3) protein by using different tagged vectors in E. coli. IBDV VP2-LS3 gene was designed and synthesized. Fusion tags, GST, NusA, MBP, Ppi, γ-crystallin, ArsC, and Grifin were joined to the N-terminus of VP2-LS3 protein. Seven expression plasmids were constructed, and each plasmid was transformed into E. coli BL21 (DE3) competent cells. After induction by IPTG, the solubility and expression levels of the various VP2-LS3 proteins were analyzed by SDS-PAGE and Western Blot analysis. The fusion tag that significantly promoted soluble expression of the VP2-LS3 protein was selected. Recombinant proteins were purified using Ni-NTA affinity chromatography, then cleaved by using TEV protease and detected by using transmission electron microscopy. Gel electrophoresis and sequencing analysis showed that all seven recombinant vectors were successfully constructed. GST, NusA, MBP, Ppi, γ-crystallin, ArsC, and Grifin enhanced the expression and solubility of VP2 protein; however, MBP was more effective for the high-purity production of VP2-LS3. Western Blot analysis confirmed successful generation of VP2-LS3 fusion protein in E. coli. The result of transmission electron microscopy showed that VP2-LS3 formed nano-sized particles with homogeneous shape and relatively uniform size. This study established a method to generate VP2-LS3 recombinant protein, which may lay a foundation for the development and subsequent study of IBDV subunit vaccines.


Assuntos
Proteínas de Escherichia coli , Vírus da Doença Infecciosa da Bursa , gama-Cristalinas , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Vírus da Doença Infecciosa da Bursa/genética , Nanoestruturas , Proteínas Recombinantes/genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Estruturais Virais/genética , gama-Cristalinas/metabolismo
14.
Front Nutr ; 8: 748031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631774

RESUMO

Origanum majorana L. is an aromatic herb that has been grown in several Mediterranean countries since ancient times, but became popular during the Middle Ages as a medicinal plant and seasoning ingredient. O. majorana has many pharmacological effects, but its immunoreactive components and mechanisms are still unclear. In this study, four compounds were isolated and identified from O. majorana by a spectral analysis, including 1H and 13C-NMR. They were 1H-indole-2-carboxylic acid (1), (+)-laricresol (2), (+)-isolaricresol (3), and procumboside B (4, pB), which were isolated for the first time in O. majorana. The immunomodulatory effects of the four compounds were screened, and pB had good immunomodulatory activity on RAW 264.7 cells. The immunomodulatory mechanism of pB was proved, in which pB could increase the secretion of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) and simultaneously upregulate the expression of CD80 and CD86 on the cell surface. These results suggested that the mechanism of pB may be related to the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs)-signaling pathways. O. majorana is rich in nutrients and is commonly used in diets, so it can be used as a nutritional supplement with immunomodulatory effects.

15.
Front Pharmacol ; 12: 744578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658879

RESUMO

Lenvatinib is the latest and promising agent that has demonstrated a significant improvement of progression-free survival in advanced hepatocellular carcinoma (HCC). However, resistance emerges soon after initial treatment, limiting the clinical benefits of lenvatinib. Therefore, understanding the mechanism of resistance is necessary for improving lenvatinib efficacy. YRDC promotes the proliferation of hepatocarcinoma cells via regulating the activity of the RAS/RAF/MEK/ERK pathway, which was the primary pathway of the anticancer effect of lenvatinib. The purpose of this study is to investigate whether YRDC modulates the sensitivity of lenvatinib in hepatocarcinoma cells. Using the CCK-8 cell viability assay, wound-healing assay and clone formation assay in cell models, and xenograft assay in null mouse, we demonstrated that Huh7 cells with YRDC knockdown showed decreased susceptibility to lenvatinib than their control cells. Furthermore, we found that lenvatinib inhibited the expression of YRDC in a time-dependent manner. This effect may aggravate resistance to lenvatinib in hepatocarcinoma cells and may be an underlying cause of resistance, which emerges soon after lenvatinib initial treatment. To investigate how YRDC modulates the sensitivity of lenvatinib, we assessed the effect of tRNA with different t6A levels on the translation of the KRAS gene by in vitro rabbit reticulocyte translation system and measured the expression levels of the KRAS gene by western blot together with qPCR. We found that YRDC regulates the protein translation of KRAS in cell models, and the tRNA with low t6A modification level reduces the translation of the KRAS in the in vitro translation system. These results suggested that YRDC mediates the resistance of lenvatinib in hepatocarcinoma cells via modulating the translation of the KRAS. In this study, YRDC was confirmed to be a potential novel predictive biomarker of lenvatinib sensitivity in HCC.

16.
ACS Appl Mater Interfaces ; 13(39): 47302-47312, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569235

RESUMO

Photothermally assisted superhydrophobic sponges play a vital role in the fields of waste oil collection, oil purification, and solar desalination. However, the widely reported superhydrophobic sponges with photothermal efficiency usually suffer from a post-/premodification process of harmful materials, high loading content of photothermal agents, and low photothermal efficiency. Herein, an MXene-based melamine sponge (MS) was facilely fabricated by hydrogen bonding interaction between the amino groups on the skeleton of the MS and the polar groups on the surface of the as-exfoliated 2D MXene Ti3C2Tx nanosheets. Interestingly, the as-fabricated MXene sponge exhibits excellent hydrophobicity and high photothermal efficiency under an extremely low loading of MXene Ti3C2Tx nanosheets (0.1 wt %). Moreover, the highly hydrophobic sponge also possesses a high oil absorption capacity as high as 176 times of its own weight and keeps stable under multiple absorption/desorption cycling tests. Surprisingly, the surface temperature of the MXene sponge can quickly reach 47 °C under illumination and has good reproducibility during multiple light on/off cycles. The excellent photothermal performance and large oil absorption capacity of the MXene sponge endow the highly hydrophobic sponge with fast solvent evaporation speed and high-purity waste oil collection (99.7 wt % dichloromethane) under illumination, which holds great promise for oil/water separation, leaked oil collection, and photo-driven waste oil collection and purification applications. It is envisioned that this work can open a new strategy for new designs of 3D multifunctional sponges for high-performance waste oil collection and purification.

17.
Environ Sci Pollut Res Int ; 28(45): 64475-64487, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34312758

RESUMO

Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil. Results indicated that the decrease in radish biomass in selenate treatment was significantly greater than that in selenite treatment at a high Se application rate (2.5 mg·kg-1) (p < 0.05). In contrast to selenite treatments, the application of selenate significantly increased the translocation of Cd from radish roots to shoots (p < 0.05). Cadmium concentration and its bioaccumulation factor in radish decreased gradually with increasing selenite application rates, while these values decreased at low Se rate (1 mg·kg-1) and increased at high Se rate for selenate treatment. Different Se application rates resulted in Cd fractions distributions to change in soil. Therefore, the application of selenite treatment had a greater detoxification effect on Cd in soil than that in selenate treatment, and the double toxic effect was observed between Se and Cd in high selenate treatment (2.5 mg·kg-1). Combined with human health risk asseeement, the application of 2.5 mg·kg-1 selenite could be a good approach for detoxification in native Cd-contaminated soil used in this study.


Assuntos
Ácido Selenioso , Selênio , Cádmio , Humanos , Ácido Selênico , Selenito de Sódio , Solo
18.
Quant Imaging Med Surg ; 11(4): 1447-1457, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33816181

RESUMO

BACKGROUND: The choice of surgical treatment for meningiomas is affected by the subtype and clinical characteristics. Therefore, an accurate preoperative diagnosis is essential. Current magnetic resonance imaging (MRI) technology is unable to distinguish between meningioma subtypes. In the present study, we compared and evaluated the utility of conventional MRI, magnetic resonance fingerprinting (MRF), and diffusion-weighted imaging (DWI) in differentiating World Health Organization grade I transitional and fibrous meningiomas from meningothelial meningiomas. METHODS: Forty-six patients with pathologically confirmed meningiomas (15 meningothelial, 18 transitional, and 13 fibrous) were enrolled in the present study. All patients underwent conventional MRI, MRF, and DWI scans before surgery using a 3T scanner. The Jonckheere-Terpstra test was used to analyze differences in the signal and enhancement characteristics of the three groups from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI). To investigate the difference in quantitative T1 and T2 values derived from MRF and apparent diffusion coefficient (ADC) values between the three groups using the Kruskal-Wallis test, regions of interest (ROIs) were manually drawn on the parenchymal portion of the tumors; P<0.017 was considered statistically significant after Bonferroni correction for multiple comparison. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performances of the different parameters. RESULTS: Meningothelial meningiomas had significantly higher T1 and T2 values than transitional and fibrous meningiomas (all P<0.017). ROC analysis results revealed that the combination of T1 and T2 values had the largest area under the curve (AUC). The AUC for the combination of T1 and T2 values was 0.826 between meningothelial and transitional meningiomas, and the AUC for the combination of T1 and T2 values between meningothelial and fibrous meningiomas was 0.903. No significant differences were found in the T1 and T2 values between transitional and fibrous meningiomas. There were also no statistically significant differences in the conventional MRI (including T1WI, T2WI, and contrast-enhanced T1WI) and ADC values between the three meningioma subtypes (all P>0.05). CONCLUSIONS: MRF may provide more quantitative information than either conventional MRI or DWI for differentiating transitional and fibrous meningiomas from meningothelial meningiomas. T1 and T2 values derived from MRF may distinguish transitional and fibrous meningiomas from meningothelial meningiomas, and the combination of T1 and T2 values provides the highest diagnostic efficacy.

19.
Front Chem ; 9: 657028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855012

RESUMO

Patrinia scabiosaefolia is a medical and edible Chinese herb with high nutritional and medicinal value. The continuing study of its chemical constituents led to the discovery of nine unique iridoids and iridoid glycosides, including three new iridoids (1-3) and six previously unknown irioid glycosides (5-10), and one known compound (4). Among them, compound 1 was a deformed iridoid, while compounds 3, 5-7, and 10 formed a new ring in their skeletons which was uncommon in this genus. For compound 3, the new ring existed between C-3 and C-10, while a 1,3-dioxane appeared between C-7 and C-10 in compounds 5-7 and 10. Moreover, compound 10 was a bis-iridoid glycoside, which was the first reported in P. scabiosaefolia. And the sugar of irioid glycosides (5-10) was glucose at C-11, except in 9 which had a 5-deoxyglucose moiety. All their structures were confirmed based on the extensive spectroscopic analysis, including IR, UV, HR-ESI-MS, ECD, and 1D- and 2D-NMR experiments. Their cytotoxic activities against HL-60, A-549, SMMC-7721, MCF-7, SW480 were also tested.

20.
Int J Immunopathol Pharmacol ; 35: 20587384211010058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855900

RESUMO

PCp-I is a polysaccharide isolated and identified from the Psoralea corylifolia L. by our research group. In this study, the immunomodulatory effects of PCp-I on RAW264.7 cells was evaluated. PCp-I could enhance the level of NO along with up-regulation of iNOS mRNA in RAW264.7 cells. The PCp-I could significantly up-regulate the mRNA expression of TNF-α and IL-6 in RAW264.7 cells, and then the expression of TNF-α, IL-6, ROS and the phagocytic activity were increased. Additionally, PCp-I could significantly up-regulate the phosphorylation level of p65, p38, ERK and JNK proteins, which proved that PCp-I could activate the macrophages by MAPKs and NF-κB signalling pathway and the TLR4 may be one of the receptors of PCp-I regulate the RAW264.7 cells.


Assuntos
Fatores Imunológicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Psoralea , Animais , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA