Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Analyst ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775334

RESUMO

Urine provides an ideal source for disease biomarker discovery. High-adhesion contaminants such as urobilin, which are difficult to remove from urine, can severely interfere with urinary proteomic analysis. Here, we aimed to establish a strategy based on single-pot, solid-phase-enhanced sample preparation (SP3) technology to prepare samples for urinary proteomics analysis that almost completely eliminates the impact of urobilin. A systematic evaluation of the effects of two urinary protein precipitation methods, two types of protein lysis buffers, and different ratios of magnetic digestion beads on the identification and quantification of the microscale urinary proteome was conducted. Our results indicate that methanol-chloroform precipitation, coupled with efficient lysis facilitated by urea, and subsequent enzymatic digestion using a mix of hydrophilic and hydrophobic magnetic beads offers the best performance. Further applying this strategy to the urine of patients with benign prostatic hyperplasia, prostate cancer and healthy individuals, combined with a narrow window of data-independent acquisition, FGFR4, MYLK, ORM2, GOLM1, SPP1, CD55, CSF1, DLD and TIMP3 were identified as potential biomarkers to discriminate benign prostatic hyperplasia and prostate cancer patients.

2.
J Med Chem ; 67(10): 7870-7890, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38739840

RESUMO

Activation of AMP-activated protein kinase (AMPK) is proposed to alleviate hyperlipidemia. With cordycepin and N6-(2-hydroxyethyl) adenosine (HEA) as lead compounds, a series of adenosine-based derivatives were designed, synthesized, and evaluated on activation of AMPK. Finally, compound V1 was identified as a potent AMPK activator with the lipid-lowering effect. Molecular docking and circular dichroism indicated that V1 exerted its activity by binding to the γ subunit of AMPK. V1 markedly decreased the serum low-density lipoprotein cholesterol levels in C57BL/6 mice, golden hamsters, and rhesus monkeys. V1 was selected as the clinical compound and concluded Phase 1 clinical trials. A single dose of V1 (2000 mg) increased AMPK activation in human erythrocytes after 5 and 12 h of treatment. RNA sequencing data suggested that V1 downregulated expression of genes involved in regulation of apoptotic process, lipid metabolism, endoplasmic reticulum stress, and inflammatory response in liver by activating AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP , Hiperlipidemias , Camundongos Endogâmicos C57BL , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Humanos , Camundongos , Masculino , Macaca mulatta , Simulação de Acoplamento Molecular , Administração Oral , Mesocricetus , Hipolipemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/síntese química , Hipolipemiantes/uso terapêutico , Descoberta de Drogas , Relação Estrutura-Atividade , Cricetinae
3.
Aging (Albany NY) ; 16(9): 7774-7798, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696324

RESUMO

BACKGROUND: Dysregulation of the immune system and N6-methyladenosine (m6A) contribute to immune therapy resistance and cancer progression in urothelial carcinoma (UC). This study aims to identify immune-related molecules, that are m6A-modified, and that are associated with tumor progression, poor prognosis, and immunotherapy response. METHODS: We identified prognostic immune genes (PIGs) using Cox analysis and random survival forest variable hunting algorithm (RSF-VH) on immune genes retrieved from the Immunology Database and Analysis Portal database (ImmPort). The RM2Target database and MeRIP-seq analysis, combined with a hypergeometric test, assessed m6A methylation in these PIGs. We analyzed the correlation between the immune pattern and prognosis, as well as their association with clinical factors in multiple datasets. Moreover, we explored the interplay between immune patterns, tumor immune cell infiltration, and m6A regulators. RESULTS: 28 PIGs were identified, of which the 10 most significant were termed methylated prognostic immune genes (MPIGs). These MPIGs were used to create an immune pattern score. Kaplan-Meier and Cox analyses indicated this pattern as an independent risk factor for UC. We observed significant associations between the immune pattern, tumor progression, and immune cell infiltration. Differential expression analysis showed correlations with m6A regulators expression. This immune pattern proved effective in predicting immunotherapy response in UC in real-world settings. CONCLUSION: The study identified a m6A-modified immune pattern in UC, offering prognostic and therapeutic response predictions. This emphasizes that immune genes may influence tumor immune status and progression through m6A modifications.


Assuntos
Adenosina , Imunoterapia , Humanos , Adenosina/análogos & derivados , Prognóstico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/mortalidade , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/terapia
4.
Clin Genitourin Cancer ; 22(3): 102093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762350

RESUMO

OBJECTIVES: RC48 is an antibody-drug conjugate (ADC) that targets HER2. In China, RC48 is approved for patients with HER-2-positive metastatic urothelial carcinoma (mUC) who have failed at least platinum-based chemotherapy. This study aimed to evaluate RC48 for mUC in a cohort of real-world patients. MATERIALS AND METHODS: We retrospectively collected data from 103 mUC patients from 12 centers between July 2021 and August 2023 in China. RC48 alone or with immunotherapy was administered until disease progression, intolerable toxicity, death, or other reasons. The objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and incidence of treatment-related adverse events (TRAEs) were evaluated. RESULTS: The median age of the patients was 68 years, and 68.0% were men. Twenty-nine (28.2%) patients received RC48 alone; 73 (70.9%) received RC48 combination therapy. The response rates were as follows: complete response in 2 (1.9%) patients, partial response in 50 (48.5%) patients, stable disease in 30 (29.1%) patients. The ORR was 50.5%. In patients with ≥80 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and creatinine clearance rate (CCr) <30 mL/min, the ORR was 75%, 48.6%, and 40.0%, respectively. The median PFS was 6 (3.9-8.1) months, and the median OS was not reached. The most reported TRAEs were peripheral sensory neuropathy (53.4%), alopecia (42.7%), asthenia (38.8%), decreased appetite (35.9%) and weight loss (35.9%) and TRAE did not increase in patients with poor condition or impaired renal function. CONCLUSION: Administration of RC48 for real-world patients is both effective and safe. mUC patients can benefit from RC48-based therapy, regardless of their poor condition or impaired renal function.


Assuntos
Imunoconjugados , Humanos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Imunoconjugados/administração & dosagem , Imunoconjugados/efeitos adversos , Imunoconjugados/uso terapêutico , China , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Receptor ErbB-2/metabolismo , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/secundário , Intervalo Livre de Progressão , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Resultado do Tratamento , Adulto
5.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139111

RESUMO

It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.


Assuntos
Proteínas Quinases Ativadas por AMP , Calpaína , Calpaína/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Proteólise , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
6.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932012

RESUMO

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Reparo de Erro de Pareamento de DNA , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Mutações Sintéticas Letais , DNA , Imunoterapia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37889402

RESUMO

Glioblastoma (GBM) recurrences appear in most cases around the resection cavity borders and arise from residual GBM cells that cannot be removed by surgery. Here, we propose a novel treatment that combines the advantages of nanomedicine and local drug delivery to target these infiltrating GBM cells. We developed an injectable lipid nanocapsule (LNC)-based formulation loaded with lauroyl-doxorubicin prodrug (DOXC12). Firstly, we demonstrated the efficacy of intratumoral administration of DOXC12 in GL261 GBM-bearing mice, which extended mouse survival. Then, we formulated an injectable hydrogel by mixing the appropriate amount of prodrug with the lipophilic components of LNC. We optimized the hydrogel by incorporating cytidine-C16 (CytC16) to achieve a mechanical stiffness adapted for an application in the brain post-surgery (DOXC12-LNCCL). DOXC12-LNCCL exhibited high DOXC12 encapsulation efficiency (95%) and a size of approximately 60 nm with sustained drug release for over 1 month in vitro. DOXC12-LNCCL exhibited enhanced cytotoxicity compared to free DOXC12 (IC50 of 349 and 86 nM, respectively) on GL261 GBM cells and prevented the growth of GL261 spheroids cultured on organotypic brain slices. In vivo, post-surgical treatment with DOXC12-LNCCL significantly improved the survival of GL261-bearing mice. The combination of this local treatment with the systemic administration of anti-inflammatory drug ibuprofen further delayed the onset of recurrences. In conclusion, our study presents a promising therapeutic approach for the treatment of GBM. By targeting residual GBM cells and reducing the inflammation post-surgery, we present a new strategy to delay the onset of recurrences in the gap period between surgery and standard of care therapy.

8.
Cell Signal ; 111: 110888, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717714

RESUMO

BACKGROUND: Immune therapy is widely used in treating clear cell renal cell carcinoma (ccRCC), yet identifying patient subgroups that are expected to response remains challenging. As complement system can mediate immune effects, including the progression of tumors, a correlation between complement system and immune therapy may exist. METHODS: Based on 11 complement system associated genes (CSAGs) identified from The Cancer Genome Atlas (TCGA), we performed unsupervised clustering and classified the tumors into two different complement system (CS) patterns. The clinical significance, tumor microenvironment (TME), functional enrichment, and immune infiltration were further analyzed. A novel scoring system named CSscore was developed based on the expression levels of the 11 CSAGs. RESULTS: Two distinct CS patterns were identified, classified as Cluster1 and Cluster2, and Cluster1 showed poor clinical outcome. Further analysis of functional enrichment, immune cell infiltration, and genetic variation revealed that Cluster1 had high infiltration of TME immune cells, but also exhibited high immune escape. The novel prognostic model, CSscore could act as an independent prognostic factor and effectively predict patients' prognosis and distinguish the therapeutic efficacy of different immune treatment strategies. The pan-cancer analysis of the CSscore indicates its potential to be further generalized to other types of cancer. CONCLUSIONS: Two distinct CS patterns were identified and were further analyzed in terms of infiltration of TME immune cells and immune escape, providing potential explanations for the impact on prognosis of ccRCC. Our CSscore prognostic model may offer a novel perspective in the management of ccRCC patients, and potentially other types of cancer as well.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Relevância Clínica , Análise por Conglomerados , Microambiente Tumoral/genética , Neoplasias Renais/genética
9.
Front Pharmacol ; 14: 1213891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680718

RESUMO

Background: SERPINE1, a serine protease inhibitor involved in the regulation of the plasminogen activation system, was recently identified as a cancer-related gene. However, its clinical significance and potential mechanisms in pan-cancer remain obscure. Methods: In pan-cancer multi-omics data from public datasets, including The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and online web tools were used to analyze the expression of SERPINE1 in different cancers and its correlation with prognosis, genetic alteration, DNA promoter methylation, biological processes, immunoregulator expression levels, immune cell infiltration into tumor, tumor mutation burden (TMB), microsatellite instability (MSI), immunotherapy response and drug sensitivity. Further, two single-cell databases, Tumor Immune Single-cell Hub 2 (TISCH2) and CancerSEA, were used to explore the expression and potential roles of SERPINE1 at a single-cell level. The aberrant expression of SERPINE1 was further verified in clear cell renal cell carcinoma (ccRCC) through qRT-PCR of clinical patient samples, validation in independent cohorts using The Gene Expression Omnibus (GEO) database, and proteomic validation using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Results: The expression of SERPINE1 was dysregulated in cancers and enriched in endothelial cells and fibroblasts. Copy number amplification and low DNA promoter methylation could be partly responsible for high SERPINE1 expression. High SERPINE1 expression was associated with poor prognosis in 21 cancers. The results of gene set enrichment analysis (GSEA) indicated SERPINE1 involvement in the immune response and tumor malignancy. SERPINE1 expression was also associated with the expression of several immunoregulators and immune cell infiltration and could play an immunosuppression role. Besides, SERPINE1 was found to be related with TMB, MSI, immunotherapy response and sensitivity to several drugs in cancers. Finally, the high expression of SERPINE1 in ccRCC was verified using qRT-PCR performed on patient samples, six independent GEO cohorts, and proteomic data from the CPTAC database. Conclusion: The findings of the present study revealed that SERPINE1 exhibits aberrant expression in various types of cancers and is associated with cancer immunity and tumor malignancy, providing novel insights for individualized cancer treatment.

10.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444812

RESUMO

Currently, most thin-layer expandable coatings are polymer-based, with very few inorganic expandable coatings. Due to the high environmental friendliness of inorganic coatings, studying new types of inorganic coatings is of great significance. A novel amorphous aluminum phosphate-based flame-retardant coating was prepared by modifying it with nano-silica, hollow silica beads, hollow glass microspheres, and boron carbide. A comprehensive study was conducted on the flame retardancy and thermal insulation performance, composition and structural evolution under flame and physical and chemical properties, and the mechanisms of flame retardancy and thermal insulation were elucidated. Large-plate combustion testing, bonding strength testing, XRD, IR, TG-DSC, and SEM testing were all applied in this work. The synergistic effect of the four fillers was very obvious, and a series of AP22XY (nano-silica/silica beads/hollow glass microspheres/boron carbide = 2:2:0:4, 2:2:1:3, 2:2:2:2, 2:2:3:1, 2:2:4:0) coatings were prepared. The change in the ratio of glass microspheres to boron carbide had a significant impact on the composition and structural evolution of the coating, thus reflecting its effectiveness as a flame retardant and thermal insulation. Although decreasing the ratio would promote the formation of borosilicate glass and Al18B4O33 and improve the thermal stability of coatings, the structure inside of the coating, especially the skeleton, would be dense, which is not conducive to thermal insulation. When the ratio of glass microspheres to boron carbide is 3:1, AP2231 shows the best fire resistance. Under the combustion of butane flame at about 1200-1300 °C, the backside temperature reaches a maximum of 226 °C at 10 min, and then the temperature gradually decreases to 175 °C at 60 min. This excellent performance is mainly attributed to three aspects: (1) the foaming and expandability of coatings when exposed to fire, (2) the multiple endothermic reactions the coating undergoes, and (3) the improvement effect of boron carbide. Additionally, AP2231 shows the best bonding performance with a strength of close to 4.5 MPa after combustion, because of the appropriate content matching between borosilicate glass, Al18B4O33, and hollow glass microspheres. The coating has potential application prospects in the construction and transportation fields, such as the protection of structural steel, fire prevention in subways and tunnels, and the prevention of lithium battery fires.

11.
J Am Chem Soc ; 145(11): 6247-6256, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36893495

RESUMO

Although two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g-1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg-1, and ultralong stability over 5000 cycles.

12.
Int J Pharm X ; 5: 100147, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36620521

RESUMO

We hypothesized that tocopherol succinate (TOS) and D-α-tocopherol polyethylene2000 succinate (TPGS2000) micelles could work as a drug delivery system while enhancing the anti-cancer efficacy of doxorubicin lauryl hydrazone derivative (DOXC12) for the treatment of glioblastoma. The DOXC12-TOS-TPGS2000 micelles were formulated with synthesized DOXC12 and TPGS2000. They showed a high drug loading of hydrophobic DOXC12 (29%), a size of <100 nm and a pH sensitive drug release behaviour. In vitro, fast uptake of DOXC12-TOS-TPGS2000 micelles by GL261 cells was observed. For cytotoxicity, DOXC12-TOS-TPGS2000 micelles were evaluated on two glioblastoma cell lines and showed synergism between DOXC12 and TOS-TPGS2000. The higher cytotoxicity of DOXC12-TOS-TPGS2000 micelles was mainly caused by necrosis. The DOXC12-TOS-TPGS2000 micelles seem to be a promising delivery system for enhancing the anticancer efficacy of doxorubicin in glioblastoma (GBM).

13.
Cell Death Discov ; 8(1): 458, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396627

RESUMO

7-methylguanosine (m7G) modification is recently found to conservatively exist in RNA internal position besides mRNA caps and mediates the various RNA metabolisms. As the core confirmed transmethylase of m7G modification, METTL1 has been reported in certain human cancers. However, the role of internal m7G at miRNAs and its core writer METTL1 in bladder cancer (BCa) remains to be elucidated. Here, we demonstrated that METTL1 was indispensable for BCa proliferation and metastasis in vitro and in vivo. By combining miRNA sequencing, m7G methylated RNA immunoprecipitation (MeRIP) and RIP, we identified METTL1 promoted the processing of miR-760 in an m7G-dependent manner. Transcription sequencing suggested that METTL1 indirectly degrades tumor suppressor ATF3 mRNA mediated by miR-760. Together, we concluded a regulatory axis composed of METTL1/m7G/miR-760/ATF3 in regulating BCa progression and provided potential therapeutic targets for BCa.

14.
Sci Data ; 9(1): 732, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446815

RESUMO

Cell lines are extensively used tools, therefore a comprehensive proteomic overview of hepatocellular carcinoma (HCC) cell lines and an extensive spectral library for data independent acquisition (DIA) quantification are necessary. Here, we present the proteome of nine commonly used HCC cell lines covering 9,208 protein groups, and the HCC spectral library containing 253,921 precursors, 168,811 peptides and 10,098 protein groups. The proteomic overview reveals the heterogeneity between different cell lines, and the similarity in proliferation and metastasis characteristics and drug targets-expression with tumour tissues. The HCC spectral library generating consumed 108 hours' runtime for data dependent acquisition (DDA) of 48 runs, 24 hours' runtime for database searching by MaxQuant version 2.0.3.0, and 1 hour' runtime for processing by SpectronautTM version 15.2. The HCC spectral library supports quantification of 7,637 protein groups of triples 2-hour DIA analysis of HepG2 and discovering biological alteration. This study provides valuable resources for HCC cell lines and efficient DIA quantification on LC-Orbitrap platform, further help to explore the molecular mechanism and candidate therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Linhagem Celular , Biblioteca Gênica , Proteômica , Bases de Dados de Proteínas
15.
Int J Biol Sci ; 18(13): 5207-5220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982887

RESUMO

Bladder cancer is one of the most common and deadly cancer worldwide. Current chemotherapy has shown limited efficacy in improving outcomes for patients. Nitroxoline, an old and widely used oral antibiotic, which was known to treat for urinary tract infection for decades. Recent studies suggested that nitroxoline suppressed the tumor progression and metastasis, especially in bladder cancer. However, the underlying mechanism for anti-tumor activity of nitroxoline remains unclear. Methods: CircRNA microarray was used to explore the nitroxoline-mediated circRNA expression profile of bladder cancer lines. Transwell and wound-healing assay were applied to evaluate the capacity of metastasis. ChIP assay was chosen to prove the binding of promotor and transcription factor. RNA-pulldown assay was performed to explore the sponge of circRNA and microRNA. Results: We first identified the circNDRG1 (has_circ_0085656) as a novel candidate circRNA. Transwell and wound-healing assay demonstrated that circNDRG1 inhibited the metastasis of bladder cancer. ChIP assay showed that circNDRG1 was regulated by the transcription factor EGR1 by binding the promotor of host gene NDRG1. RNA-pulldown assay proved that circNDRG1 sponged miR-520h leading to the overexpression of smad7, which was a negative regulatory protein of EMT. Conclusions: Our research revealed that nitroxoline may suppress metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nitroquinolinas , RNA Circular/genética , Transdução de Sinais/genética , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
16.
Mol Cancer ; 21(1): 111, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538475

RESUMO

BACKGROUND: Sunitinib resistance can be classified into primary and secondary resistance. While accumulating research has indicated several underlying factors contributing to sunitinib resistance, the precise mechanisms in renal cell carcinoma are still unclear. METHODS: RNA sequencing and m6A sequencing were used to screen for functional genes involved in sunitinib resistance. In vitro and in vivo experiments were carried out and patient samples and clinical information were obtained for clinical analysis. RESULTS: We identified a tumor necrosis factor receptor-associated factor, TRAF1, that was significantly increased in sunitinib-resistant cells, resistant cell-derived xenograft (CDX-R) models and clinical patients with sunitinib resistance. Silencing TRAF1 increased sunitinib-induced apoptotic and antiangiogenic effects. Mechanistically, the upregulated level of TRAF1 in sunitinib-resistant cells was derived from increased TRAF1 RNA stability, which was caused by an increased level of N6-methyladenosine (m6A) in a METTL14-dependent manner. Moreover, in vivo adeno-associated virus 9 (AAV9) -mediated transduction of TRAF1 suppressed the sunitinib-induced apoptotic and antiangiogenic effects in the CDX models, whereas knockdown of TRAF1 effectively resensitized the sunitinib-resistant CDXs to sunitinib treatment. CONCLUSIONS: Overexpression of TRAF1 promotes sunitinib resistance by modulating apoptotic and angiogenic pathways in a METTL14-dependent manner. Targeting TRAF1 and its pathways may be a novel pharmaceutical intervention for sunitinib-treated patients.


Assuntos
Adenosina , Carcinoma de Células Renais , Neoplasias Renais , Metiltransferases , Sunitinibe , Fator 1 Associado a Receptor de TNF , Adenosina/análogos & derivados , Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Metiltransferases/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Sunitinibe/farmacologia , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo
17.
Front Oncol ; 12: 763341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186724

RESUMO

OBJECTIVE: YTH domain family 2 (YTHDF2) is an important N6-methyladenosine (m6A) reader, but its role in lung adenocarcinoma remains elusive. This study assessed its function in lung adenocarcinoma. METHODS: YTHDF2 expression in lung adenocarcinoma was explored using public databases, such as The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumour Analysis Consortium (CPTAC). The effect of YTHDF2 on a lung adenocarcinoma cell line was explored by performing cytological and molecular experiments. Molecules downstream of YTHDF2 were identified using proteomics, and the related pathways were verified through cytological and molecular biology experiments. RESULTS: YTHDF2 expression was upregulated in lung adenocarcinoma, and patients with high YTHDF2 expression experienced prolonged overall survival. In two lung cancer cell lines, YTHDF2 knockdown inhibited proliferation but promoted migration, invasion, and the epithelial-mesenchymal transition. The proteomic analysis identified 142 molecules downstream of YTHDF2, and 11 were closely related to survival. Further experiments revealed that YTHDF2 inhibited expression of the family with sequence similarity 83D (FAM83D)-TGFß1-SMAD2/3 pathway components. This study is the first to show that YTHDF2 regulated the downstream TGFß1-SMAD2/3 pathway through FAM83D in lung adenocarcinoma. CONCLUSION: YTHDF2 inhibits the migration and invasion of lung adenocarcinoma cells by regulating the FAM83D-TGFß1-pSMAD2/3 pathway, which may play an important role in lung cancer metastasis.

18.
Pharmaceutics ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35057020

RESUMO

Glioblastoma is an unmet clinical need. Local treatment strategies offer advantages, such as the possibility to bypass the blood-brain barrier, achieving high drug concentrations at the glioblastoma site, and consequently reducing systemic toxicity. In this study, we evaluated the feasibility of using hyaluronic acid (HA) for the local treatment of glioblastoma. HA was conjugated to doxorubicin (DOX) with distinct bio-responsive linkers (direct amide conjugation HA-NH-DOX), direct hydrazone conjugation (HA-Hz-DOX), and adipic hydrazone (HA-AdpHz-DOX). All HA-DOX conjugates displayed a small size (less than 30 nm), suitable for brain diffusion. HA-Hz-DOX showed the best performance in killing GBM cells in both 2D and 3D in vitro models and displayed superior activity in a subcutaneous GL261 tumor model in vivo compared to free DOX and other HA-DOX conjugates. Altogether, these results demonstrate the feasibility of HA as a polymeric platform for the local treatment of glioblastoma and the importance of rationally designing conjugates.

19.
Mol Ther Nucleic Acids ; 27: 547-561, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036065

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most lethal urological cancer and is characterized by a high rate of metastasis and relapse. N6-Methyladenosine (m6A) is implicated in various stages of cancer development. However, a thorough understanding of m6A-modified lncRNAs in ccRCC is lacking. The results showed that METTL14 had decreased expression in ccRCC tissues. In addition, the expression of METTL14 was negatively correlated to the prognosis, stage, and ccRCC tumor grade. The silencing of METTL14 was shown to significantly increase metastasis in vitro and in vivo. High-throughput methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that the m6A levels of Lnc-LSG1 could be regulated by METTL14. Lnc-LSG1 can directly bind to ESRP2 protein and promote ESRP2 degradation via facilitating ESRP2 ubiquitination. However, m6A modification on Lnc-LSG1 can block the interaction between Lnc-LSG1 and ESRP2 via the m6A reader, YTHDC1. Taken together, our findings unraveled the novel mechanism of METTL14 inhibiting ccRCC progression, and explored the correlation between m6A and lncRNA in ccRCC for the first time.

20.
Front Mol Biosci ; 8: 670409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616769

RESUMO

Testicular nuclear receptor 4 (TR4) is a member of the nuclear hormone receptor family and acts as a ligand-activated transcription factor and functions in many biological processes, such as development, cellular differentiation, and homeostasis. Recent studies have shown that TR4 plays an important role in prostate cancer, renal cell carcinoma, and hepatocellular carcinoma; however, its potential link to bladder cancer (BC) remains unknown. This study found that bladder cancer exhibited a higher expression of TR4 compared to normal tissues. Overexpressed TR4 promoted the bladder cancer cell proliferation, and knocked down TR4 with TR4-siRNA suppressed the bladder cancer cell proliferation. Mechanistic studies reveal that TR4 functions by altering the expression of Bcl-2 to regulate apoptosis in bladder cancer cells. Furthermore, knocking down Bcl-2 reversed the BC proliferation induced by TR4. In vivo, we also confirmed that TR4 knockdown mice (TR4+/-) showed slower bladder cancer growth than wild-type mice (TR4+/+) induced by the carcinogenic chemicals. Moreover, TR4+/- mice showed a lower grade of histopathology than the control group. In conclusion, these results indicate that TR4 plays a key role in bladder cancer proliferation, and targeting TR4 would probably be a potential strategy for bladder cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA