Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biol Trace Elem Res ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771434

RESUMO

In order to explore the effect of excessive iron supplementation on ferroptosis in mouse testes, Kunming mice received injections of varying concentrations of iron. The organ weight, sperm density, and malformation rate were measured. Observations of pathological and ultrastructural alterations in spermatogenic tubules were conducted using haematoxylin eosin (HE) staining and transmission electron microscopy(TEM). Transcript levels of related genes and serum biochemical indicators were measured in mouse testicular tissue. The results showed that higher iron concentration inhibited the growth of mice; reduced the organ coefficients of the testis, heart, and liver; and increased the rate of sperm malformation and mortality. Supplementation with high levels of iron ions can adversely affect the male reproductive system by reducing sperm count, damaging the structure of the seminiferous tubules and causing sperm cell abnormalities. In addition, the iron levels also affected the immune response and blood coagulation ability by affecting the red blood cells, white blood cells and platelets. The results showed that iron ions can affect mouse testicular tissue and induce ferroptosis by altering the expression of ferroptosis-related genes. However, the degree of effect was different for the different concentrations of iron ions. The study also revealed the potential role of deferoxamine in inhibiting the occurrence of ferroptosis. Nevertheless, the damage caused to the testis by deferoxamine supplementation suggests the need for further research in this direction. This study provides reference for reproductive toxicity induced by environmental iron exposure and clarifies the mechanism of reproductive toxicity caused by iron overload and the important role of iron in the male reproductive system.

2.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816687

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/enzimologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Camundongos , Infecções por Escherichia coli/microbiologia , Virulência , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Peptidoglicano/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Humanos , Modelos Animais de Doenças
3.
J Formos Med Assoc ; 123(8): 882-890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38423926

RESUMO

BACKGROUND/PURPOSE: The optimal timing of vascular access (VA) creation for hemodialysis (HD) and whether this timing affects mortality and health-care utilization after HD initiation remain unclear. Thus, we conducted a population-based study to explore their association. METHODS: We used Taiwan's National Health Insurance Research Database to analyze health-care outcomes and utilization in a cohort initiating HD during 2003-2013. We stratified patients by the following VA creation time points: >180, 91-180, 31-90, and ≤30 days before and ≤30 days after HD initiation and examined all-cause mortality, ambulatory care utilization/costs, hospital admission/costs, and total expenditure within 2 years after HD. Cox regression, Poisson regression, and general linear regression were used to analyze mortality, health-care utilization, and costs respectively. RESULTS: We identified 77,205 patients who started HD during 2003-2013. Compared with the patients undergoing VA surgery >180 days before HD initiation, those undergoing VA surgery ≤30 days before HD initiation had the highest mortality-15.92 deaths per 100-person-years, crude hazard ratio (HR) 1.56, and adjusted HR 1.28, the highest hospital admissions rates- 2.72 admission per person-year, crude rate ratio (RR) 1.48 and adjusted RR 1.32, and thus the highest health-care costs- US$31,390 per person-year, 7% increase of costs and 6% increase with adjustment within the 2-year follow-up after HD initiation. CONCLUSION: Late VA creation for HD can increase all-cause mortality, hospitalization, and health-care costs within 2 years after HD initiation. Early preparation of VA has the potential to reduce post-HD mortality and healthcare expenses for the ESKD patients.


Assuntos
Gastos em Saúde , Hospitalização , Diálise Renal , Humanos , Taiwan , Masculino , Feminino , Pessoa de Meia-Idade , Diálise Renal/economia , Diálise Renal/mortalidade , Hospitalização/economia , Hospitalização/estatística & dados numéricos , Idoso , Adulto , Gastos em Saúde/estatística & dados numéricos , Fatores de Tempo , Falência Renal Crônica/terapia , Falência Renal Crônica/mortalidade , Modelos de Riscos Proporcionais , Bases de Dados Factuais , Modelos Lineares , Estudos Retrospectivos , Derivação Arteriovenosa Cirúrgica/mortalidade
4.
Adv Healthc Mater ; 13(7): e2302729, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38097368

RESUMO

Acute kidney injury (AKI) is a common adverse event in chemotherapy patients. AKI is accompanied by the generation of reactive oxygen species (ROS) and inflammation. Therefore, the management of ROS and inflammation is a potential strategy for AKI mitigation. Herein, polyethylene glycol-coated osmium nanozyme-based antidotes (Os) are developed for imaging-guided photothermal therapy (PTT) in combination with cisplatin (Pt); while, avoiding AKI induced by high-dose Pt. Os nanoantidotes can enhance the efficiency of tumor treatment during combined PTT and chemotherapy and inhibit tumor metastasis by improving the hypoxic and inflammatory tumor microenvironment. Os nanoantidotes preferentially accumulate in the kidney because of their 2-nm size distribution; and then, regulate inflammation by scavenging ROS and generating oxygen to alleviate Pt-induced AKI. Os nanoantidotes can be cleared from the kidneys by urine excretion but can be degraded under hydrogen peroxide stimulation, reducing the bio-retention of these compounds. By integrating PTT with inflammatory regulation, Os nanoantidotes have the potential to reduce the side effects of chemotherapy, offering an alternative route for the clinical management of cancer patients with chemotherapy-induced AKI.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Neoplasias , Humanos , Osmio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Neoplasias/patologia , Inflamação , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Acta Biomater ; 172: 369-381, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37852456

RESUMO

Cancer stem cells (CSCs) are found in many solid tumors, which play decisive roles in the occurrence, recurrence and metastasis of tumors. However, drugs are difficult to kill CSCs due to their limited number and location in oxygen-deprived tissue far from the blood vessels. Meanwhile, the survival and stemness maintenance of CSCs strongly depend on the tumor microenvironment (TME). Herein, we developed a CD44 antibody modified iridium nanosheet with enzyme-like activity (defined as Ir Nts-Ab) that effectively eradicates CSCs for cancer therapy. We observe that Ir Nts-Ab can enrich tumor tissues to remove excessive reactive oxygen species and produce oxygen, thus alleviating hypoxia and the inflammatory TME to reduce the proportion of CSCs and inhibit metastasis. In addition, Ir Nts-Ab targets CSCs and normal cancer cells with near infrared II-region photothermal therapy (NIR-II PTT), and is easily taken up by CSCs due to recognition of the CD44 proteins. Moreover, photoacoustic imaging helps monitor drug accumulation and hypoxic TME improvement in tumor tissue. Importantly, Ir Nts-Ab has good biological safety, making it suitable for biomedical applications. This iridium nanozyme based on TME regulation as well as NIR-II PTT will be a promising strategy for the treatment of cancer. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are key factors that make tumors difficult to eradicate, and strongly depend on the hypoxic tumor microenvironment (TME), which plays a crucial role in the occurrence and metastasis of tumors. Herein, an antibody modified iridium nanosheet (definition as Ir Nts-Ab) was developed for targeted eradication of CSCs by photoacoustic imaging guided photothermal therapy (PTT) and TME regulation. Ir Nts-Ab with catalase-like activity could inhibit HIF-1α by producing oxygen, thus effectively reducing the proportion of CSCs and inhibiting tumor metastasis. Additionally, Ir Nts-Ab achieved the eradication of CSCs by PTT, and eliminated reactive oxygen species to decrease the inflammatory response, resulting in reduced tumor metastasis, which was promising for the cure of solid tumors in the clinics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Irídio/farmacologia , Irídio/uso terapêutico , Microambiente Tumoral , Técnicas Fotoacústicas/métodos , Espécies Reativas de Oxigênio , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Oxigênio , Linhagem Celular Tumoral
6.
Adv Healthc Mater ; 12(20): e2203177, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36947826

RESUMO

Traditional starvation treatment strategies, which involve glucose oxidase and drug-induced thrombi, often suffer from aggravated tumor hypoxia and have failed to improve antitumor efficacy in combination with oxygen-dependent photodynamic therapy (PDT). Herein, glucose transporter 1 inhibitor genistein (Gen) and photosensitizer chlorin e6 (Ce6) are integrated to construct carrier-free self-assembled nanoparticles defined as GC NPs, for starvation therapy-amplified PDT of tumor. GC NPs with regular morphology and stability are screened out by component adjustment, while the function of each component is preserved. On the one hand, Gen released from GC NPs can cut off tumor glucose uptake by inhibiting the glucose transporter 1 to restrict tumor growth, achieving starvation therapy. On the other hand, they are able to decrease the amount of oxygen consumed by tumor respiration and amplify the therapeutic effect of PDT. In vitro and in vivo experiments verify the excellent synergistic antitumor therapeutic efficacy of GC NPs without any apparent toxicity. Moreover, fluorescence and photoacoustic imaging provide guidance for in vivo PDT, demonstrating the excellent tumor enrichment efficiency of GC NPs. It is believed that this starvation therapy-amplified PDT strategy by carrier-free self-assembled GC NPs holds promising clinical prospects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Transportador de Glucose Tipo 1 , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio , Nanopartículas/uso terapêutico , Porfirinas/farmacologia , Neoplasias/tratamento farmacológico
7.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672960

RESUMO

Fritillaria cirrhosa D. Don (known as Chuan-Bei-Mu in Chinese) can synthesize isosteroidal alkaloids (ISA) with excellent medicinal value, and its bulb has become an indispensable ingredient in many patented drugs. Members of the cytochrome P450 (CYP450) gene superfamily have been shown to play essential roles in regulating steroidal alkaloids biosynthesis. However, little information is available on the P450s in F. cirrhosa. Here, we performed full-length transcriptome analysis and discovered 48 CYP450 genes belonging to 10 clans, 25 families, and 46 subfamilies. By combining phylogenetic trees, gene expression, and key F. cirrhosa ISA content analysis, we presumably identify seven FcCYP candidate genes, which may be hydroxylases active at the C-22, C-23, or C-26 positions in the late stages of ISA biosynthesis. The transcript expression levels of seven FcCYP candidate genes were positively correlated with the accumulation of three major alkaloids in bulbs of different ages. These data suggest that the candidate genes are most likely to be associated with ISA biosynthesis. Finally, the subcellular localization prediction of FcCYPs and transient expression analysis within Nicotiana benthamiana showed that the FcCYPs were mainly localized in the chloroplast. This study presents a systematic analysis of the CYP450 gene family in F. cirrhosa and provides a foundation for further functional characterization of the CYPs involved in ISA biosynthesis.


Assuntos
Alcaloides , Fritillaria , Fritillaria/genética , Fritillaria/metabolismo , Filogenia , Perfilação da Expressão Gênica , Sistema Enzimático do Citocromo P-450/genética
9.
ACS Appl Mater Interfaces ; 14(51): 56471-56482, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36519432

RESUMO

Metastasis of breast cancer is key to poor prognosis and high mortality. However, the excess reactive oxygen species (ROS) and inflammatory response induced by photothermal therapy (PTT) further aggravate tumor metastasis. Meanwhile, the hypoxic tumor microenvironment promotes tumor cells to metastasize to distant organs. Herein, the intrinsic limitations of PTT for metastatic tumor have been addressed by fabricating polyethylene glycol modified iridium tungstate (IrWOx-PEG) nanoparticles. The as-designed IrWOx-PEG nanoparticles displayed good photothermal (PT) conversion ability for duplex photoacoustic/PT imaging guided PTT and multienzyme mimetic feature for broad-spectrum ROS scavenging. On the one hand, IrWOx-PEG effectively removed excess ROS generated during PTT and reduced inflammation. On the other hand, owing to the catalase-like activity, it preferentially triggered the catalytic production of oxygen by decomposing ROS, leading to relieving of the hypoxic microenvironment. Hence, under bimodal imaging guidance, IrWOx-PEG induced PTT completely eliminated in situ breast cancer in 4T1 tumor-bearing mice with no observable system toxicity, as well as further restricting tumor metastasis to other vital organs (lungs) by ROS scavenging, anti-inflammation, and regulating hypoxic microenvironment. We anticipate that this work will lead to new treatment strategies for other metastatic cancers.


Assuntos
Neoplasias Mamárias Animais , Nanopartículas , Neoplasias , Animais , Camundongos , Fototerapia/métodos , Terapia Fototérmica , Irídio , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias/terapia , Nanopartículas/uso terapêutico , Neoplasias Mamárias Animais/terapia , Microambiente Tumoral
10.
BMC Genomics ; 23(1): 511, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836113

RESUMO

BACKGROUND: Bulbus Fritillariae Cirrhosae (BFC) is an endangered high-altitude medicine and food homology plant with anti-tumor, anti-asthmatic, and antitussive activities as it contains a variety of active ingredients, especially steroidal alkaloids. Bulbus Fritillariae Thunbergia (BFT) is another species of Fritillaria that grows at lower altitude areas. Production of plant-derived active ingredients through a synthetic biology strategy is one of the current hot topics in biological research, which requires a complete understanding of the related molecular pathways. Our knowledge of the steroidal alkaloid biosynthesis in Fritillaria species is still very limited. RESULTS: To promote our understanding of these pathways, we performed non-target metabolomics and transcriptome analysis of BFC and BFT. Metabolomics analysis identified 1288 metabolites in BFC and BFT in total. Steroidal alkaloids, including the proposed active ingredients of Fritillaria species peimine, peimisine, peiminine, etc., were the most abundant alkaloids detected. Our metabolomics data also showed that the contents of the majority of the steroidal alkaloids in BFC were higher than in BFT. Further, our comparative transcriptome analyses between BFC and BFT identified differentially expressed gene sets among these species, which are potentially involved in the alkaloids biosynthesis of BFC. CONCLUSION: These findings promote our understanding of the mechanism of steroidal alkaloids biosynthesis in Fritillaria species.


Assuntos
Alcaloides , Fritillaria , Fritillaria/genética , Perfilação da Expressão Gênica , Metaboloma , Raízes de Plantas
11.
Cell Res ; 32(7): 638-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459936

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Assuntos
Transportador 3 de Aminoácido Excitatório , Isocitrato Desidrogenase , Neoplasias , Animais , Células Endoteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutaratos , Isocitrato Desidrogenase/genética , Camundongos , Mitocôndrias/metabolismo , Mutação , Microambiente Tumoral
12.
Front Med (Lausanne) ; 8: 726214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660637

RESUMO

Urothelial carcinoma is a common urological cancer in chronic kidney disease patients. Cystoscopy and urine cytology are the clinical diagnostic tools for UC. However, cystoscopy is an invasive procedure, while urine cytology showed low sensitivity for low-grade urothelial tumors. High accuracy with non-invasive tools for UC is needed for CKD patients. Our study collected a total of 272 urine and 138 plasma samples to detect the miRNA expression levels for establishing UC signatures from CKD patients. Seventeen candidate miRNAs of biofluids were selected and confirmed by qRT-PCR. Our results showed that urinary miR-1274a and miR-30a-5p expression levels were significantly lower but miR-19a-5p expression levels were higher in UC when compared with CKD. In plasma samples, miR-155-5p, miR-19b-1-5p, miR-378, and miR-636 showed significantly lower expression in UC compared to those with CKD. The Kaplan-Meier curve showed that lower expression of miR-19a, miR-19b, miR-636 and miR-378, and higher expression of miR-708-5p were associated with poor prognosis in patients with bladder cancer. In addition, we produced classifiers for predicting UC by multiple logistic regression. The urine signature was developed with four miRNAs, and the AUC was 0.8211. Eight miRNA expression levels from both urine and plasma samples were examined, and the AUC was 0.8595. Two miRNA classifiers and the nomograms could improve the drawbacks of current UC biomarker screenings for patients with CKD.

13.
Front Microbiol ; 12: 667782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122381

RESUMO

Escherichia coli is one major cause of bacterial infections and can horizontally acquire antimicrobial resistance and virulence genes through conjugation. Because conjugative plasmids can rapidly spread among bacteria of different species, the plasmids carrying both antimicrobial resistance and virulence genes may pose a significant threat to public health. Therefore, the identification and characterization of these plasmids may facilitate a better understanding of E. coli pathogenesis and the development of new strategies against E. coli infections. Because iron uptake ability is a potential virulence trait of bacteria, we screened for E. coli conjugative plasmids able to confer both iron uptake ability and ampicillin resistance. The plasmid pEC41, which was derived from the bacteremia clinical isolate EC41, was identified. EC41, which carried the fimH27 allele, belonged to sequence type (ST) 405 and phylogroup D. According to the sequencing analyses, pEC41 was 86 kb in size, and its backbone structure was almost identical to that of another highly conjugative plasmid, pCTX-M3, in which the extended-spectrum ß-lactamase gene bla CTX-M-3 was originally identified. pEC41 carried bla CTX-M-3 and bla TEM-1. The ferric citrate uptake (fec) system was identified in pEC41 and was responsible for conferring iron uptake ability. The fec system contributes to the pathogenesis of EC41 in systemic infections but not in urinary tract infections (UTIs). However, this system promoted competitive fitness of a cystitis-associated clinical isolate to colonize urinary tracts. Additionally, the distribution of the fec system was related to E. coli isolates associated with human bacteremia and UTIs. In summary, the present study identified a novel conjugative plasmid, pEC41, which conferred both antimicrobial resistance and an extra iron uptake ability to E. coli. The iron uptake ability was encoded in the fec system and contributed to E. coli pathogenesis. This study is the first to show that the fec system is a virulence factor in E. coli.

14.
J Proteome Res ; 20(5): 2953-2963, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780252

RESUMO

Urothelial carcinoma (UC) is the ninth most prevalent malignancy worldwide. Noninvasive and efficient biomarkers with high accuracy are imperative for the surveillance and diagnosis of UC. CKD patients were enrolled as a control group in this study for the discovery of highly specific urinary protein markers of UC. An iTRAQ-labeled quantitative proteomic approach was used to discover novel potential markers. These markers were further validated with 501 samples by ELISA assay, and their diagnostic accuracies were compared to those of other reported UC markers. BRDT, CYBP, GARS, and HDGF were identified as novel urinary UC biomarkers with a high discrimination ability in a population comprising CKD and healthy subjects. The diagnostic values of the four novel UC markers were better than that of a panel of well-known or FDA-approved urinary protein markers CYFR21.1, Midkine, and NUMA1. Three of our discovered markers (BRDT, HDGF, GARS) and one well-known marker (CYFR21.1) were finally selected and combined as a marker panel having AUC values of 0.962 (95% CI, 0.94-0.98) and 0.860 (95% CI, 0.83-0.89) for the discrimination between UC and normal groups and UC and control (healthy + CKD) groups, respectively.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Biomarcadores , Biomarcadores Tumorais , Proteínas de Ciclo Celular , Humanos , Proteômica
15.
Chemosphere ; 273: 127834, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33077191

RESUMO

BACKGROUND: Di(2-ethylhexyl) phthalate (DEHP) is one of the most widely used phthalates and is associated with breast cancer. Ths association between DEHP and other types of cancer is not clear. DEHP may increase matrix metalloproteinase-9 that is critical for the development of urothelial cancer (UC). We examined the association between urinary phthalate metabolites and UC. CKD patients were selected as a control group because CKD patients are more at risk of UC than the general population. METHODS: In this cross-sectional study, we measured seven urinary phthalate metabolites that are abundant and can be measured using HPLC-MS/MS in Taiwan CKD patients between Jul 2013 and Dec 2015. MiBP (a urinary metabolite of Dibutyl phthalates[DBP]) and MEHHP (a urinary metabolite of DEHP) were described because they are the most abundant phthalate metabolites. The association of phthalate (log-transformed) and UC were analyzed using logistic regression with adjustments for age, gender, renal function, use of traditional Chinese medicine, toxins (dye, organic solvent), and non-steroidal anti-inflammatory drugs. RESULTS: We measured the urinary MEHHP and MiBP of 496 patients (224 UC and 272 CKD patients). The urinary MEHHP was associated with UC but MiBP was not. Medical history including the use of non-steroid anti-inflammatory drugs, exposure to environmental toxins (dye, paint, and organic solvent), and the use of traditional Chinese medicine was independently associated with UC. The adjusted odds ratio of MEHHP was 1.42 (95% confidence interval: 1.21-1.68). CONCLUSION: Phthalate urinary metabolite(MEHHP) may be associated with UC in CKD patients and the association is independent of well-known risk factors of UC.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Neoplasias , Ácidos Ftálicos , Insuficiência Renal Crônica , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Insuficiência Renal Crônica/induzido quimicamente , Taiwan , Espectrometria de Massas em Tandem
16.
Adv Sci (Weinh) ; 7(4): 1901672, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099754

RESUMO

Like many important crops, peanut is a polyploid that underwent polyploidization, evolution, and domestication. The wild allotetraploid peanut species Arachis monticola (A. monticola) is an important and unique link from the wild diploid species to cultivated tetraploid species in the Arachis lineage. However, little is known about A. monticola and its role in the evolution and domestication of this important crop. A fully annotated sequence of ≈2.6 Gb A. monticola genome and comparative genomics of the Arachis species is reported. Genomic reconstruction of 17 wild diploids from AA, BB, EE, KK, and CC groups and 30 tetraploids demonstrates a monophyletic origin of A and B subgenomes in allotetraploid peanuts. The wild and cultivated tetraploids undergo asymmetric subgenome evolution, including homoeologous exchanges, homoeolog expression bias, and structural variation (SV), leading to subgenome functional divergence during peanut domestication. Significantly, SV-associated homoeologs tend to show expression bias and correlation with pod size increase from diploids to wild and cultivated tetraploids. Moreover, genomic analysis of disease resistance genes shows the unique alleles present in the wild peanut can be introduced into breeding programs to improve some resistance traits in the cultivated peanuts. These genomic resources are valuable for studying polyploid genome evolution, domestication, and improvement of peanut production and resistance.

17.
BMC Nephrol ; 20(1): 266, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315601

RESUMO

BACKGROUND: Sclerostin, an antagonist of the Wingless-type mouse mammary tumor virus integration site (Wnt) pathway that regulates bone metabolism, is a potential contributor of chronic kidney disease (CKD)-mineral and bone disorder (MBD), which has various forms of presentation, from osteoporosis to vascular calcification. The positive association of sclerostin with bone mineral density (BMD) has been demonstrated in CKD and hemodialysis (HD) patients but not in peritoneal dialysis (PD) patients. This study assessed the association between sclerostin and BMD in PD patients. METHODS: Eighty-nine PD patients were enrolled; their sera were collected for measurement of sclerostin and other CKD-MBD-related markers. BMD was also assessed simultaneously. We examined the relationship between sclerostin and each parameter through Spearman correlation analysis and by comparing group data between patients with above- and below-median sclerostin levels. Univariate and multiple logistic regression models were employed to define the most predictive of sclerostin levels in the above-median category. RESULTS: Bivariate analysis revealed that sclerostin was correlated with spine BMD (r = 0.271, P = 0.011), spine BMD T-score (r = 0.274, P = 0.010), spine BMD Z-score (r = 0.237, P = 0.027), and intact parathyroid hormone (PTH; r = - 0.357, P < 0.001) after adjustments for age and sex. High BMD, old age, male sex, increased weight and height, diabetes, and high osteocalcin and uric acid levels were observed in patients with high serum sclerostin levels and an inverse relation was noticed between PTH and sclerostin. Univariate logistic regression analysis demonstrated that BMD is positively correlated with above-median sclerostin levels (odds ratio [OR] = 65.61, P = 0.002); the correlation was retained even after multivariate adjustment (OR = 121.5, P = 0.007). CONCLUSIONS: For the first time, this study demonstrated a positive association between serum sclerostin levels and BMD in the PD population.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/sangue , Densidade Óssea , Diálise Peritoneal , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/terapia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/metabolismo
18.
PhytoKeys ; (108): 117-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275735

RESUMO

Species delimitation in the genus Populus is particularly challenging due to high levels of intraspecific polymorphism as well as frequent interspecific hybridisation and introgression. In this study, we aimed to examine the taxonomic status of Populusningshanica and P.wulianensis using an integrative taxonomy that considers multiple operational criteria. We carried out morphometric analyses of leaf traits and genetic examinations (including sequence variations at five barcoding DNAs and polymorphisms at 14 nuclear microsatellite SSR primers) at the population level between them and two closely related species P.adenopoda and P.davidiana. Results suggest that P.wulianensis belongs to the polymorphic species, P.adenopoda and should be considered as a synonym of the latter. P.ningshanica may have arisen as a result on the hybridisation between P.adenopoda and P.davidiana and therefore should be treated as P.×ningshanica. This study highlights the importance of the integrated evidence in taxonomic decisions of the disputed species.

19.
Sci Rep ; 8(1): 6908, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720598

RESUMO

This study investigated the characteristics of patients with different chronic kidney disease (CKD) stages according to various body mass index (BMI) categories and determined the influence of BMI in renal function deterioration. We conducted a multicenter, longitudinal cohort study based on the Epidemiology and Risk Factors Surveillance of CKD project (2008-2013) and National Health Insurance Research Database (2001-2013). A total of 7357 patients with CKD aged 20-85 years from 14 hospitals were included in the study. A higher male sex, diabetes mellitus (DM) and hypertension were noted among overweight and obese CKD patients, while more cancer prevalence was noted among underweight CKD patients. Charlson comorbidity index was significantly higher and correlated with BMI among late CKD patients. Patients with BMI < 18.5 kg/m2 exhibited non-significantly higher events of eGFR decline events in both early and late CKD stages than other BMI groups. BMI alone is not a determinant of CKD progression among our Taiwanese CKD patients. Obesity should be re-defined and body weight manipulation should be individualized in CKD patients.


Assuntos
Índice de Massa Corporal , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Feminino , Seguimentos , Humanos , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Razão de Chances , Sobrepeso/complicações , Vigilância da População , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/fisiopatologia , Medição de Risco , Índice de Gravidade de Doença , Adulto Jovem
20.
J Microbiol Immunol Infect ; 49(2): 168-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24874430

RESUMO

BACKGROUND/PURPOSE: Helicobacter pylori is a human gastric pathogen. Antibiotic resistance of H. pylori has become a problem increasing the failure of H. pylori eradication. Therefore alternative approaches are required. The aim of this study was to evaluate the anti-H. pylori activity of Lactobacillus pentosus strain LPS16 and the mechanism of its killing effect. METHODS: The anti-H. pylori activity of LPS16 was determined by the disc diffusion test and time killing assay. High-performance liquid chromatography analysis was used to analyze the secreted compounds of LPS16. Sixty H. pylori strains isolated from different gastric diseases, having different antibiotic susceptibility were collected to analyze the spectrum of anti-H. pylori activity of LPS16. Adhesion ability of LPS16 to gastric epithelial cell lines was assayed by flow cytometry. RESULTS: The anti-H. pylori activity of LPS16 depended on the secreted component, and lactic acid mediated bactericidal activity against H. pylori. The bactericidal activity did not vary significantly among the strains isolated from different diseases having different antibiotic susceptibility. Moreover, LPS16 can adhere on gastric epithelial cell lines AKG and MKN45. CONCLUSION: L. pentosus strain LPS16 had the broad-spectrum anti-H. pylori activity, suggesting that it can be used to prevent H. pylori infection.


Assuntos
Antibacterianos/metabolismo , Antibiose , Helicobacter pylori/efeitos dos fármacos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Aderência Bacteriana , Cromatografia Líquida de Alta Pressão , Células Epiteliais/microbiologia , Citometria de Fluxo , Humanos , Lactobacillus/fisiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA