Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
World J Gastrointest Surg ; 16(7): 1973-1980, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39087097

RESUMO

Among minimally invasive surgical procedures, colorectal surgery is associated with a notably higher incidence of incisional hernia (IH), ranging from 1.7% to 24.3%. This complication poses a significant burden on the healthcare system annually, necessitating urgent attention from surgeons. In a study published in the World Journal of Gastrointestinal Surgery, Fan et al compared the incidence of IH among 1614 patients who underwent laparoscopic colorectal surgery with different extraction site locations and evaluated the risk factors associated with its occurrence. This editorial analyzes the current risk factors for IH after laparoscopic colorectal surgery, emphasizing the impact of obesity, surgical site infection, and the choice of incision location on its development. Furthermore, we summarize the currently available preventive measures for IH. Given the low surgical repair rate and high recurrence rate associated with IH, prevention deserves greater research and attention compared to treatment.

2.
World J Gastrointest Surg ; 16(7): 1969-1972, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39087120

RESUMO

This editorial discusses the article "Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis" published in the latest edition of the World Journal of Gastrointestinal Surgery. Immunotherapy has achieved outstanding success in tumor treatment. However, the presence of liver metastasis (LM) restrains the efficacy of immunotherapy in various tumors, including lung cancer, colorectal cancer, renal cell carcinoma, melanoma, and gastric cancer. A decrease in CD8+ T cells and nature killer cells, along with an increase in macrophages and regulatory T cells, was observed in the microenvironment of LM, leading to immunotherapy resistance. More studies are necessary to determine the best strategy for enhancing the effectiveness of immunotherapy in patients with LM.

3.
Eur J Prev Cardiol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087659

RESUMO

AIMS: To investigate the association of accelerometer-measured intensity-specific physical activity (PA) with all-cause and cause-specific mortality among individuals with cardiovascular disease (CVD). METHODS: In this prospective cohort study, 8,024 individuals with pre-existing CVD (mean age: 66.6 years, female: 34.1%) from the UK Biobank had their PA measured using wrist-worn accelerometers over a 7-day period in 2013-2015. All-cause, cancer, and CVD mortality was ascertained from death registries. Cox regression modelling and restricted cubic splines were used to assess the associations. Population-attributable fractions (PAFs) were used to estimate the proportion of preventable deaths if more PA were undertaken. RESULTS: During an average of 6.8 years of follow-up, 691 deaths (273 from cancer and 219 from CVD) were recorded. An inverse non-linear association was found between PA duration and all-cause mortality risk, irrespective of PA intensity. The hazard ratio (HR) of all-cause mortality plateaued at 1800 minutes/week for light-intensity PA (LPA), 320 minutes/week for moderate-intensity PA (MPA) and 15 minutes/week for vigorous-intensity PA (VPA). The highest quartile of PA associated lower risks for all-cause mortality, with HRs of 0.63 (95% confidence interval [CI]: 0.51-0.79), 0.42 (0.33-0.54) and 0.47 (0.37-0.60) for LPA, MPA, and VPA, respectively. Similar associations were observed for cancer and CVD mortality. Additionally, the highest PAF were noted for VPA, followed by MPA. CONCLUSION: We found an inverse non-linear association between all intensities of PA (LPA, MPA, VPA, and MVPA) and mortality risk in CVD patients using accelerometer-derived data, but with larger magnitude of the associations than that in previous studies based on self-reported PA.


This study investigated the associations of accelerometer-derived intensity-specific physical activity (PA) with the risks of all-cause and cause-specific mortality among individuals with cardiovascular disease (CVD). L-shaped dose-response relationships between the duration of PA and all-cause mortality were observed across all levels of PA intensities. The risk reduction for mortality exhibited a sharp decline from 0 to 1800 minutes/week of light-intensity PA, followed by reaching a plateau. Notably, the inflection points for moderate-intensity PA and vigorous-intensity PA were found at 320 and 15 minutes per week, respectively. The population-attributable fraction analysis indicated that a significant number of deaths could potentially be prevented if individuals with CVD engaged in more vigorous physical activities.

4.
Heliyon ; 10(15): e35404, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170145

RESUMO

Background: Cuproptosis may represent a potential biomarker for predicting prognosis and immunotherapy response, but the available evidence is insufficient. Methods: The multiple single-cell RNA sequencing (scRNA-seq) datasets were analyzed to investigate the specific occurrence of cuproptosis in distinct cell populations. Utilizing 28 scRNA-seq datasets, TCGA pan-cancer cohort, and 10 immunotherapy cohorts, we developed a cuproptosis signature (Cup.Sig). This signature was used to construct prediction models for immunotherapy response and identify potential prognostic biomarkers for pan-cancer using 11 different machine learning algorithms. Results: Malignant cells demonstrate the higher cuproptosis scores in comparison to other cell types across diverse cancer types. The Cup.Sig exhibits significant associations with cancer hallmarks and immune cell response in multiple cancer types. Leveraging the Cup.Sig, the robust pan-cancer immunotherapy prediction model and prognostic biomarker have been established and validated using diverse datasets from various platforms. Conclusions: We developed a pan-cancer cuproptosis signature for predicting survival and immunotherapy response.

5.
Heliyon ; 10(15): e35362, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170309

RESUMO

Mahvash disease, a rare autosomal recessive metabolic disorder characterized by biallelic loss-of-function mutations in the glucagon receptor gene (GCGR), induces significant pancreatic hyperglucagonemia, resulting in α-cell hyperplasia and occasional hypoglycemia. Utilizing CRISPR-Cas9 technology, we engineered a mouse model, designated as Gcgr V369M/V369M, harboring a homozygous V369M substitution in the glucagon receptor (GCGR). Although wild-type (WT) and Gcgr V369M/V369M mice exhibited no discernible difference in appearance or weight, adult Gcgr V369M/V369M mice, approximately 12 months of age, displayed a notable decrease in fasting blood glucose levels and elevated the levels of cholesterol and low-density lipoprotein-cholesterol. Moreover, plasma amino acid levels such as alanine (Ala), proline (Pro) and arginine (Arg) were elevated in Gcgr V369M/V369M mice contributing to α-cell proliferation and hyperglucagonemia. Despite sustained α-cell hyperplasia and increased circulating glucagon levels in Gcgr V369M/V369M mice, metabolic disparities between the two groups gradually waned with age accompanied by a reduction in α-cell hyperplasia. Throughout the lifespan of the mice (up to approximately 30 months), pancreatic neuroendocrine tumors (PNETs) did not manifest. This prolonged observation of metabolic alterations in Gcgr V369M/V369M mice furnishes valuable insights for a deeper comprehension of mild Mahvash disease in humans.

6.
Lab Invest ; : 102125, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168250

RESUMO

Lymph node status is a key factor in determining stage, treatment, and prognosis in cancers. Small lymph nodes in the fat-rich gastrointestinal and breast cancer specimens are easily missed in conventional sampling methods. This study examined the effectiveness of degreasing pretreatment with dimethyl sulfoxide (DMSO) in lymph node detection and its impact on the analysis of clinical treatment-related proteins and molecules. Thirty-three cases of gastrointestinal cancer specimens from radical gastrectomy and 63 cases of breast cancer specimens from modified radical mastectomy were included. After routine sampling of lymph nodes, the specimens were immersed in DMSO for 30 minutes for defatting. We assessed changes in the number of detected lymph nodes and pN staging in 33 gastrointestinal cancer specimens and 37 breast cancer specimens. Additionally, we analyzed histological characteristics, Masson's trichrome special staining, and immunohistochemistry (gastrointestinal cancer: MMR, HER2, PD-L1; breast cancer: ER, PR, AR, HER2, Ki-67, PD-L1). Molecular status was evaluated for colorectal cancer (KRAS, NRAS, BRAF, MSI) and breast cancer (HER2) in gastrointestinal cancer specimens and the remaining 26 breast cancer specimens. Compared to conventional sampling, DMSO pretreatment increased the detection rate of small lymph nodes (gastrointestinal cancer: p<0.001; breast cancer: p<0.001) and improved pN staging in one case each of gastric cancer, colon cancer, and rectal cancer (3/33, 9.1%). No significant difference in the morphology, special staining, protein, and molecular status of cancer tissue after DMSO treatment were found. Based on these results and our institutional experience, we recommend incorporating DMSO degreasing pretreatment into clinical pathological sampling practices.

7.
Front Oncol ; 14: 1352638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988712

RESUMO

Background: Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are among the most prevalent gynecologic malignancies globally. The prognosis is abysmal once cervical cancer progresses to lymphatic metastasis. Anoikis, a specialized form of apoptosis induced by loss of cell adhesion to the extracellular matrix, plays a critical role. The prediction model based on anoikis-related genes (ARGs) expression and clinical data could greatly aid clinical decision-making. However, the relationship between ARGs and CESC remains unclear. Methods: ARGs curated from the GeneCards and Harmonizome portals were instrumental in delineating CESC subtypes and in developing a prognostic framework for patients afflicted with this condition. We further delved into the intricacies of the immune microenvironment and pathway enrichment across the identified subtypes. Finally, our efforts culminated in the creation of an innovative nomogram that integrates ARGs. The utility of this prognostic tool was underscored by Decision Curve Analysis (DCA), which illuminate its prospective benefits in guiding clinical interventions. Results: In our study, We discerned a set of 17 survival-pertinent, anoikis-related differentially expressed genes (DEGs) in CESC, from which nine were meticulously selected for the construction of prognostic models. The derived prognostic risk score was subsequently validated as an autonomous prognostic determinant. Through comprehensive functional analyses, we observed distinct immune profiles and drug response patterns among divergent prognostic stratifications. Further, we integrated the risk scores with the clinicopathological characteristics of CESC to develop a robust nomogram. DCA corroborated the utility of our model, demonstrating its potential to enhance patient outcomes through tailored clinical treatment strategies. Conclusion: The predictive signature, encompassing nine pivotal genes, alongside the meticulously constructed nomogram developed in this research, furnishes clinicians with a sophisticated tool for tailoring treatment strategies to individual patients diagnosed with CESC.

8.
Nat Commun ; 15(1): 5706, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977676

RESUMO

Haematopoietic stem cells (HSCs) possess unique physiological adaptations to sustain blood cell production and cope with stress responses throughout life. To maintain these adaptations, HSCs rely on maintaining a tightly controlled protein translation rate. However, the mechanism of how HSCs regulate protein translation remains to be fully elucidated. In this study, we investigate the role of transfer RNA (tRNA) m1A58 'writer' proteins TRMT6 and TRMT61A in regulating HSCs function. Trmt6 deletion promoted HSC proliferation through aberrant activation of mTORC1 signaling. TRMT6-deficient HSCs exhibited an impaired self-renewal ability in competitive transplantation assay. Mechanistically, single cell RNA-seq analysis reveals that the mTORC1 signaling pathway is highly upregulated in HSC-enriched cell populations after Trmt6 deletion. m1A-tRNA-seq and Western blot analysis suggest that TRMT6 promotes methylation modification of specific tRNA and expression of TSC1, fine-tuning mTORC1 signaling levels. Furthermore, Pharmacological inhibition of the mTORC1 pathway rescued functional defect in TRMT6-deficient HSCs. To our knowledge, this study is the first to elucidate a mechanism by which TRMT6-TRMT61A complex-mediated tRNA-m1A58 modification regulates HSC homeostasis.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas , Alvo Mecanístico do Complexo 1 de Rapamicina , RNA de Transferência , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Autorrenovação Celular/genética , Camundongos Knockout , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Metilação
9.
Water Res ; 262: 122125, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053210

RESUMO

Anaerobic digestion is an indispensable technical option towards green and low-carbon wastewater treatment, with interspecies electron transfer (IET) playing a key role in its efficiency and operational stability. The exogenous semiconductive iron oxides have been proven to effectively enhance IET, while the cognition of the physicochemical-biochemical coupling stimulatory mechanism was circumscribed and remains to be elucidated. In this study, semiconductive iron oxides, α-Fe2O3, γ-Fe2O3, α-FeOOH, and γ-FeOOH were found to significantly enhance syntrophic methanogenesis by 76.39, 72.40, 37.33, and 32.64% through redirecting the dominant IET pathway from classical interspecies hydrogen transfer to robust direct interspecies electron transfer (DIET). Their alternative roles as electron shuttles potentially substituting for c-type cytochromes were conjectured to establish an electron transport matrix associated with conductive pili. Distinguished from the conventional electron conductor mechanism of conductive Fe3O4, semiconductive iron oxides facilitated DIET intrinsically through the capacitive Fe(III/II) redox cycles coupled with secondary mineralization. The growth of Aminobacterium, Sedimentibacter, and Methanothrix was enriched and the gene copy numbers of Geobacteraceae 16S ribosomal ribonucleic acid were selectively flourished by 2.0-∼4.5- fold to establish a favorable microflora for DIET pathway. Metabolic pathways of syntrophic acetogenesis from propionate/butyrate and CO2 reduction methanogenesis were correspondingly promoted. The above findings provide new insights into the underlying mechanism of iron minerals enhancing the DIET-oriented pathway and offer paradigms for redox-mediated energy harvesting biological wastewater treatment.


Assuntos
Ferro , Oxirredução , Anaerobiose , Ferro/metabolismo , Transporte de Elétrons , Metano/metabolismo , Compostos Férricos
10.
J Colloid Interface Sci ; 673: 722-734, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38901362

RESUMO

Polymer-mediated cytosolic protein delivery demonstrates a promising strategy for the development of protein therapeutics. Here, we propose a new designed diblock copolymer which realizes efficient cytosolic protein delivery both in vitro and in vivo. The polymer contains one protein-binding block composed of phenylboronic acid (PBA) and N-(3-dimethylaminopropyl) (DMAP) pendant units for protein binding and endosomal escape, respectively, followed by the response to ATP enriched in the cytosol which triggers the protein release. The other block is PEG designed to improve particle size control and circulation in vivo. By optimizing the block composition, sequence and length of the copolymer, the optimal one (BP20) was identified with the binding block containing 20 units of both PBA and DMAP, randomly distributed along the chain. When mixed with proteins, the BP20 forms stable nanoparticles and mediates efficient cytosolic delivery of a wide range of proteins including enzymes, toxic proteins and CRISPR/Cas9 ribonucleoproteins (RNP), to various cell lines. The PEG block, especially when further modified with folic acid (FA), enables tumor-targeted delivery of Saporin in vivo, which significantly suppresses the tumor growth. Our results shall inspire the design of novel polymeric vehicles with robust capability for cytosolic protein delivery, which holds great potential for both biological research and therapeutic applications.


Assuntos
Citosol , Humanos , Citosol/metabolismo , Animais , Polietilenoglicóis/química , Camundongos , Polímeros/química , Tamanho da Partícula , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Ácidos Borônicos/química , Proteínas/química , Portadores de Fármacos/química , Propriedades de Superfície , Desenho de Fármacos
11.
Am J Med Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944203

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.

12.
J Orthop Surg Res ; 19(1): 370, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907263

RESUMO

BACKGROUND: Long non-coding RNAs (LncRNAs) are recognized as a pivotal element in the processes of fracture healing and the osteogenic differentiation of stem cells. This study investigated the molecular mechanism and regulatory significance of lncRNA MAGI2-AS3 (MAGI2-AS3) in fracture healing. METHODS: Serum levels of MAGI2-AS3 in patients with normal and delayed fracture healing were verified by RT-qPCR assays. The predictive efficacy of MAGI2-AS3 for delayed fracture healing was analyzed by ROC curve. Osteogenic markers were quantified by RT-qPCR assays. MC3T3-E1 cell viability was detected using CCK-8 assay, and flow cytometry was utilized to measure cell apoptosis. The dual-luciferase reporter gene assay was used to determine the targeted binding between MAGI2-AS3 and miR-223-3p. RESULTS: Serum MAGI2-AS3 expression was decreased in patients with delayed fracture healing compared with patients with normal healing. Elevated MAGI2-AS3 resulted in an upregulation of the proliferative capacity of MC3T3-E1 cells and a decrease in mortality, along with increased levels of both osteogenic markers. However, after transfection silencing MAGI2-AS3, the trend was reversed. Additionally, miR-223-3p was the downstream target of MAGI2-AS3 and was controlled by MAGI2-AS3. miR-223-3p mimic reversed the promoting effects of MAGI2-AS3 overexpression on osteogenic marker levels and cell growth, and induced cell apoptosis. CONCLUSION: The upregulation of MAGI2-AS3 may expedite the healing of fracture patients by targeting miR-223-3p, offering a novel biomarker for diagnosing patients with delayed healing.


Assuntos
Regulação para Baixo , Consolidação da Fratura , MicroRNAs , RNA Longo não Codificante , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Consolidação da Fratura/genética , Consolidação da Fratura/fisiologia , MicroRNAs/genética , Osteogênese/genética , RNA Longo não Codificante/genética
13.
Heliyon ; 10(11): e31705, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845982

RESUMO

Acute myeloid leukemia (AML) is a prevalent hematological malignancy among adults. Recent studies suggest that the length of telomeres could significantly affect both the risk of developing AML and the overall survival (OS). Despite the limited focus on the prognostic value of telomere-related genes (TRGs) in AML, our study aims at addressing this gap by compiling a list of TRGs from TelNet, as well as collecting clinical information and TRGs expression data through the Gene Expression Omnibus (GEO) database. The GSE37642 dataset, sourced from GEO and based on the GPL96 platform, was divided into training and validation sets at a 6:4 ratio. Additionally, the GSE71014 dataset (based on the GPL10558 platform), GSE12417 dataset (based on the GPL96 and GPL570 platforms), and another portion of the GSE37642 dataset (based on the GPL570 platform) were designated as external testing sets. Univariate Cox regression analysis identified 96 TRGs significantly associated with OS. Subsequent Lasso-Cox stepwise regression analysis pinpointed eight TRGs (MCPH1, SLC25A6, STK19, PSAT1, KCTD15, DNMT3B, PSMD5, and TAF2) exhibiting robust predictive potential for patient survival. Both univariate and multivariate survival analyses unveiled TRG risk scores and age as independent prognostic variables. To refine the accuracy of survival prognosis, we developed both a nomogram integrating clinical parameters and a predictive risk score model based on TRGs. In subsequent investigations, associations were emphasized not solely regarding the TRG risk score and immune infiltration patterns but also concerning the response to immune-checkpoint inhibitor (ICI) therapy. In summary, the establishment of a telomere-associated genetic risk model offers a valuable tool for prognosticating AML outcomes, thereby facilitating informed treatment decisions.

14.
Curr Gene Ther ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38847249

RESUMO

AIMS: Investigating the impact of stemness-related circadian rhythm disruption (SCRD) on hepatocellular carcinoma (HCC) prognosis and its potential as a predictor for immunotherapy response. BACKGROUND: Circadian disruption has been linked to tumor progression through its effect on the stemness of cancer cells. OBJECTIVE: Develop a novel signature for SCRD to accurately predict clinical outcomes and immune therapy response in patients with HCC. METHODS: The stemness degree of patients with HCC was assessed based on the stemness index (mRNAsi). The co-expression circadian genes significantly correlated with mRNAsi were identified and defined as stemness- and circadian-related genes (SCRGs). The SCRD scores of samples and cells were calculated based on the SCRGs. Differentially expressed genes with a prognostic value between distinct SCRD groups were identified in bulk and single-cell datasets to develop an SCRD signature. RESULTS: A higher SCRD score indicates a worse patient survival rate. Analysis of the tumor microenvironment revealed a significant correlation between SCRD and infiltrating immune cells. Heterogeneous expression patterns, functional states, genomic variants, and cell-cell interactions between two SCRD populations were revealed by transcriptomic, genomic, and interaction analyses. The robust SCRD signature for predicting immunotherapy response and prognosis in patients with HCC was developed and validated in multiple independent cohorts. CONCLUSIONS: In summary, distinct tumor immune microenvironment patterns were confirmed under SCRD in bulk and single-cell transcriptomic, and SCRD signature associated with clinical outcomes and immunotherapy response was developed and validated in HCC.

15.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793257

RESUMO

Transition metal dichalcogenides (TMDs), particularly monolayer TMDs with direct bandgap properties, are key to advancing optoelectronic device technology. WSe2 stands out due to its adjustable carrier transport, making it a prime candidate for optoelectronic applications. This study explores monolayer WSe2 synthesis via H2-assisted CVD, focusing on how carrier gas flow rate affects WSe2 quality. A comprehensive characterization of monolayer WSe2 was conducted using OM (optical microscope), Raman spectroscopy, PL spectroscopy, AFM, SEM, XPS, HRTEM, and XRD. It was found that H2 incorporation and flow rate critically influence WSe2's growth and structural integrity, with low flow rates favoring precursor concentration for product formation and high rates causing disintegration of existing structures. This research accentuates the significance of fine-tuning the carrier gas flow rate for optimizing monolayer WSe2 synthesis, offering insights for fabricating monolayer TMDs like WS2, MoSe2, and MoS2, and facilitating their broader integration into optoelectronic devices.

16.
Signal Transduct Target Ther ; 9(1): 139, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811552

RESUMO

Conventional type 1 dendritic cells (cDC1) are the essential antigen-presenting DC subset in antitumor immunity. Suppressing B-cell lymphoma 9 and B-cell lymphoma 9-like (BCL9/BCL9L) inhibits tumor growth and boosts immune responses against cancer. However, whether oncogenic BCL9/BCL9L impairs antigen presentation in tumors is still not completely understood. Here, we show that targeting BCL9/BCL9L enhanced antigen presentation by stimulating cDC1 activation and infiltration into tumor. Pharmacological inhibition of BCL9/BCL9L with a novel inhibitor hsBCL9z96 or Bcl9/Bcl9l knockout mice markedly delayed tumor growth and promoted antitumor CD8+ T cell responses. Mechanistically, targeting BCL9/BCL9L promoted antigen presentation in tumors. This is due to the increase of cDC1 activation and tumor infiltration by the XCL1-XCR1 axis. Importantly, using single-cell transcriptomics analysis, we found that Bcl9/Bcl9l deficient cDC1 were superior to wild-type (WT) cDC1 at activation and antigen presentation via NF-κB/IRF1 signaling. Together, we demonstrate that targeting BCL9/BCL9L plays a crucial role in cDC1-modulated antigen presentation of tumor-derived antigens, as well as CD8+ T cell activation and tumor infiltration. Targeting BCL9/BCL9L to regulate cDC1 function and directly orchestrate a positive feedback loop necessary for optimal antitumor immunity could serve as a potential strategy to counter immune suppression and enhance cancer immunotherapy.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Animais , Humanos , Camundongos , Apresentação de Antígeno/imunologia , Apresentação de Antígeno/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Receptores de Quimiocinas , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
17.
Sci Rep ; 14(1): 11320, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760435

RESUMO

The difference in the survival of obese patients and normal-weight/lean patients with diabetic MAFLD remains unclear. Therefore, we aimed to describe the long-term survival of individuals with diabetic MAFLD and overweight/obesity (OT2M), diabetic MAFLD with lean/normal weight (LT2M), MAFLD with overweight/obesity and without T2DM (OM), and MAFLD with lean/normal weight and without T2DM (LM). Using the NHANESIII database, participants with MAFLD were divided into four groups. Hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause, cardiovascular disease (CVD)-related, and cancer-related mortalities for different MAFLD subtypes were evaluated using Cox proportional hazards models. Of the 3539 participants, 1618 participants (42.61%) died during a mean follow-up period of 274.41 ± 2.35 months. LT2M and OT2M had higher risks of all-cause mortality (adjusted HR, 2.14; 95% CI 1.82-2.51; p < 0.0001; adjusted HR, 2.24; 95% CI 1.32-3.81; p = 0.003) and CVD-related mortality (adjusted HR, 3.25; 95% CI 1.72-6.14; p < 0.0001; adjusted HR, 3.36; 95% CI 2.52-4.47; p < 0.0001) than did OM. All-cause and CVD mortality rates in LT2M and OT2M patients were higher than those in OM patients. Patients with concurrent T2DM and MAFLD should be screened, regardless of the presence of obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Masculino , Feminino , Obesidade/complicações , Obesidade/mortalidade , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/mortalidade , Adulto , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/etiologia , Hepatopatia Gordurosa não Alcoólica/mortalidade , Hepatopatia Gordurosa não Alcoólica/complicações , Modelos de Riscos Proporcionais , Idoso , Fatores de Risco
18.
Dose Response ; 22(2): 15593258241245804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617388

RESUMO

Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.

19.
Phytomedicine ; 128: 155526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564921

RESUMO

BACKGROUND: Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE: To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS: Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS: SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION: SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.


Assuntos
Alcaloides , Aterosclerose , Macrófagos , Morus , Animais , Humanos , Masculino , Camundongos , Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Dieta Hiperlipídica , Células Endoteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Morus/química , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA