Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zool Res ; 44(2): 287-302, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36785896

RESUMO

Due to the difficulty in accurately identifying structural variants (SVs) across genomes, their impact on cis-regulatory divergence of closely related species, especially fish, remains to be explored. Recently identified broad H3K4me3 domains are essential for the regulation of genes involved in several biological processes. However, the role of broad H3K4me3 domains in phenotypic divergence remains poorly understood. Siniperca chuatsi and S. scherzeri are closely related but divergent in several phenotypic traits, making them an ideal model to study cis-regulatory evolution in sister species. Here, we generated chromosome-level genomes of S. chuatsi and S. scherzeri, with assembled genome sizes of 716.35 and 740.54 Mb, respectively. The evolutionary histories of S. chuatsi and S. scherzeri were studied by inferring dynamic changes in ancestral population sizes. To explore the genetic basis of adaptation in S. chuatsi and S. scherzeri, we performed gene family expansion and contraction analysis and identified positively selected genes (PSGs). To investigate the role of SVs in cis-regulatory divergence of closely related fish species, we identified high-quality SVs as well as divergent H3K27ac and H3K4me3 domains in the genomes of S. chuatsi and S. scherzeri. Integrated analysis revealed that cis-regulatory divergence caused by SVs played an essential role in phenotypic divergence between S. chuatsi and S. scherzeri. Additionally, divergent broad H3K4me3 domains were mostly associated with cancer-related genes in S. chuatsi and S. scherzeri and contributed to their phenotypic divergence.


Assuntos
Evolução Biológica , Peixes , Genoma , Animais , Peixes/genética , Fenótipo
3.
Mol Biol Evol ; 37(8): 2394-2413, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32343808

RESUMO

For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein-protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant.


Assuntos
Metilação de DNA , Duplicação Gênica , Genoma de Planta , Nelumbo/genética , Poliploidia , Cromossomos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA