Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 19(11): 767-778, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367548

RESUMO

Thymoquinone (TQ) has been demonstrated to have anti-cancer, anti-inflammatory, antioxidant, and anti-diabetic activities. Shigella flexneri is the main pathogen causing shigellosis in developing countries. In this study, the antibacterial activity of TQ against S. flexneri and its possible antibacterial mechanism were studied. In addition, the inhibitory effect of TQ on the formation of S. flexneri biofilm was also investigated. The results showed that both the minimum inhibitory concentration and the minimum bactericidal concentration of TQ against S. flexneri ATCC 12022 were 0.2 mg/mL. After treatment with TQ at 0.4 mg/mL in Luria-Bertani broth for 3 h, or treatment with 0.2 mg/mL TQ in phosphate-buffered saline for 60 min, the number of S. flexneri (initial number is 6.5 log colony-forming units/mL) dropped below the detection limit. TQ also displayed good antibacterial activity in contaminated lettuce juice. TQ caused an increase in intracellular reactive oxygen species level, a decrease in intracellular adenosine triphosphate (ATP) concentration, a change in the intracellular protein, damage to cell membrane integrity and changes in cell morphology. In addition, TQ showed the ability to inhibit the formation of S. flexneri biofilm; treatment resulted in a decrease in the amount of biofilm and extracellular polysaccharides, and the destruction of biofilm structure. These findings indicated that TQ had strong antimicrobial and antibiofilm activities and a potential to be applied in the fruit and vegetable processing industry or other food industries to control S. flexneri.


Assuntos
Benzoquinonas , Shigella flexneri , Benzoquinonas/farmacologia , Biofilmes , Antibacterianos/farmacologia
2.
Microb Pathog ; 171: 105741, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36038086

RESUMO

Cinnamaldehyde (CA) has demonstrated anti-inflammatory, anti-tumor and anti-cancer activities; Its antimicrobial and antibiofilm actions against Shigella flexneri, on the other hand, have not been investigated. Sh. flexneri is a gram-negative foodborne pathogen that can be widely found in nature and some industrial production environments. In this current research, our aim was to examine the influences of CA on planktonic bacteria and biofilm formation. The minimum inhibitory concentration (MIC) of CA against Sh. flexneri strain was 100 µg/mL, while bacteria treated with CA showed a longer lag phase compared with the untreated control. CA effectively inactivated the Sh. flexneri in LB broth and fresh lettuce juice. CA treatment resulted in cell membrane permeability changes and dysfunction, as proven by cell membrane depolarization, decreased intracellular ATP concentration. In addition, CA was also discovered to increase the level of reactive oxygen species (ROS) in cells, and induce morphological changes in cells. Crystal violet staining showed that the biomass of biofilm was decreased significantly with CA in 24 h. Light microscopy and field emission scanning electron microscopy (FESEM) observations demonstrated decreased biofilm adhesion and destruction of biofilm architecture after treatment with CA. These findings indicated that CA acts as a natural bacteriostatic agent to control Sh. flexneri in food processing and production.


Assuntos
Plâncton , Shigella flexneri , Acroleína/análogos & derivados , Trifosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias , Biofilmes , Violeta Genciana , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
3.
ACS Appl Mater Interfaces ; 14(9): 11104-11115, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199514

RESUMO

Nanozymes with peroxidase-like activity have great application potential in combating pathogenic bacterial infections and are expected to become an alternative to antibiotics. However, the near-neutral pH and high glutathione (GSH) levels in the bacterial infection microenvironment severely limit their applications in antibacterial therapy. In this work, a metal-organic framework (MOF)-based cascade catalytic glutathione-depleting system named MnFe2O4@MIL/Au&GOx (MMAG) was constructed. The MMAG cascade-catalyzed glucose to provide H+ and produces a large amount of toxic reactive oxygen species. In addition, MMAG consumed GSH, which can result in bacterial death more easily. Systematic antibacterial experiments illustrated that MMAG has superior antibacterial effects on both Gram-positive bacteria and Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Glutationa/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/patologia , Catálise , Glucose/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Estruturas Metalorgânicas , Camundongos Endogâmicos BALB C , Prótons , Espécies Reativas de Oxigênio/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia
4.
Foodborne Pathog Dis ; 18(6): 398-404, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33709804

RESUMO

Coenzyme Q0 (CoQ0) is a natural compound found in Antrodia cinnamomea, which has a variety of biological activities. Here, the antibacterial activity and possible antibacterial mechanism of CoQ0 against Escherichia coli were investigated. The antibacterial effect was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, and by assessing bacterial survival and the effect on the growth of E. coli after CoQ0 treatment in Luria-Bertani (LB) broth. To reveal the antibacterial mechanism of CoQ0, changes in intracellular adenosine triphosphate (ATP) concentration, membrane potential, and bacterial protein content, as well as effects on cell morphology and membrane integrity, were investigated. Both the MICs and MBCs of CoQ0 against E. coli were 0.1 mg/mL. After treatment of E. coli (6.5 log colony-forming units/mL) with 0.1 mg/mL of CoQ0 in LB broth for 3 h, the number of viable cells dropped below the detection limit. In addition, CoQ0 treatment resulted in the reduction in intracellular ATP concentration, cell membrane hyperpolarization, decreased bacterial protein concentrations, and damage to cell membrane integrity and cellular morphology. These results indicated that CoQ0 has effective antibacterial activity against E. coli, suggesting potential applications in food industry safety.


Assuntos
Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Escherichia coli/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polyporales/química
5.
ACS Appl Mater Interfaces ; 12(29): 32278-32288, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580547

RESUMO

The increasing evidence supports the fact that lactate in the tumor microenvironment (TME) plays a vital role in tumor proliferation, metastasis, and recurrence, which in turn is emerging as one of the most interesting molecular targets for tumor treatment. Here, hierarchical porous zeolitic imidazolate framework-8 (ZIF-8) as the nanocarrier is fabricated to simultaneously load lactate oxidase (LOD) and Fe3O4 nanoparticles (NPs), called LOD & Fe3O4@ZIF-8 NPs (LFZ NPs), for tumor therapy. On one hand, the sharp consumption of lactate in the TME by LOD will change the essential "soil" where tumor cells live so as to suppress tumor rapid growth. On the other hand, hydrogen peroxide (H2O2) is produced in the TME from the oxidation of lactate catalyzed by LOD and subsequently converted to highly toxic hydroxyl radicals (•OH) catalyzed by Fe3O4 NPs via Fenton-like reactions to kill tumor cells. Based on the endogenous catalysis, this dual-modal strategy of tumor therapy based on lactate is simple, safe, and effective, which deserves to be well concerned.


Assuntos
Antineoplásicos/farmacologia , Compostos Férricos/farmacologia , Imidazóis/farmacologia , Estruturas Metalorgânicas/farmacologia , Oxigenases de Função Mista/química , Nanopartículas/química , Zeolitas/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Feminino , Compostos Férricos/química , Humanos , Imidazóis/química , Células MCF-7 , Estruturas Metalorgânicas/química , Camundongos , Camundongos Endogâmicos BALB C , Oxigenases de Função Mista/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA