Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 233, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373988

RESUMO

Head and neck squamous cell carcinoma (HNSCC) constitutes one of the most common types of human cancers and often metastasizes to lymph nodes. Platinum-based chemotherapeutic drugs are commonly used for treatment of a wide range of cancers, including HNSCC. Its mode of action relies on its ability to impede DNA repair mechanisms, inducing apoptosis in cancer cells. However, due to acquired resistance and toxic side-effects, researchers have been focusing on developing novel combinational therapeutic strategies to overcome cisplatin resistance. In the current study, we identified p90RSK, an ERK1/2 downstream target, as a key mediator and a targetable signaling node against cisplatin resistance. Our results strongly support the role of p90RSK in cisplatin resistance and identify the combination of p90RSK inhibitor, BI-D1870, with cisplatin as a novel therapeutic strategy to overcome cisplatin resistance. In addition, we have identified TMEM16A expression as a potential upstream regulator of p90RSK through the ERK pathway and a biomarker of response to p90RSK targeted therapy in the context of cisplatin resistance.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Proteínas Quinases S6 Ribossômicas 90-kDa , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Anoctamina-1/genética , Anoctamina-1/metabolismo
2.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546993

RESUMO

Background: Surgery and/or platinum-based chemoradiation remain standard of care for patients with head and neck squamous cell carcinoma (HNSCC). While these therapies are effective in a subset of patients, a substantial proportion experience recurrence or treatment resistance. As cisplatin mediates cytotoxicity through oxidative stress while polyamines play a role in redox regulation, we posited that combining cisplatin with polyamine transport inhibitor, AMXT-1501, would increase oxidative stress and tumor cell death in HNSCC cells. Methods: Cell proliferation was measured in syngeneic mouse HNSCC cell lines treated with cisplatin ± AMXT-1501. Synergy was determined by administering cisplatin and AMXT-1501 at a ratio of 1:10 to cancer cells in vitro . Cancer cells were transferred onto mouse flanks to test the efficacy of treatments in vivo . Reactive oxygen species (ROS) were measured. Cellular apoptosis was measured with flow cytometry using Annexin V/PI staining. High-performance liquid chromatography (HPLC) was used to quantify polyamines in cell lines. Cell viability and ROS were measured in the presence of exogenous cationic amino acids. Results: The combination of cisplatin and AMXT-1501 synergize in vitro on HNSCC cell lines. In vivo combination treatment resulted in tumor growth inhibition greater than either treatment individually. The combination treatment increased ROS production and induced apoptotic cell death. HPLC revealed the synergistic mechanism was independent of intracellular polyamine levels. Supplementation of cationic amino acids partially rescued cancer cell viability and reduced ROS. Conclusion: AMXT-1501 enhances the cytotoxic effects of cisplatin in vitro and in vivo in aggressive HNSCC cell lines through a polyamine-independent mechanism.

3.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425842

RESUMO

Tumor growth and proliferation are regulated by numerous mechanisms. Communication between intracellular organelles has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction) is emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. TMEM16A has recently been shown to drive lysosomal biogenesis, but its impact on mitochondrial function is unclear. Here, we show that (1) patients with high TMEM16A SCCHN display increased mitochondrial content specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) ß-catenin/NRF2 signaling is a critical linchpin that drives mitochondrial biogenesis, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that LMI drives tumor proliferation and facilitates a functional interaction between lysosomes and mitochondria. Therefore, inhibition of LMI may serve as a therapeutic strategy for patients with SCCHN.

4.
Cancer Gene Ther ; 30(6): 785-793, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194198

RESUMO

RNA technology has recently come to the forefront of innovative medicines and is being explored for a wide range of therapies, including prophylactic and therapeutic vaccines, biotherapeutic protein expression and gene therapy. In addition to conventional mRNA platforms now approved for prophylactic SARS-CoV2 vaccines, synthetic self-replicating RNA vaccines are currently being evaluated in the clinic for infectious disease and oncology. The prototypical srRNA vectors in clinical development are derived from alphaviruses, specifically Venezuelan Equine Encephalitis Virus (VEEV). While non-VEEV alphaviral strains have been explored as single cycle viral particles, their use as synthetic vectors largely remains under-utilized in clinical applications. Here we describe the potential commonalities and differences in synthetic alphaviral srRNA vectors in host cell interactions, immunogenicity, cellular delivery, and cargo expression. Thus, unlike the current thinking that VEEV-based srRNA is a one-size-fits-all platform, we argue that a new drug development approach leveraging panels of customizable, synthetic srRNA vectors will be required for clinical success.


Assuntos
COVID-19 , Vacinas , Vacinas Virais , Animais , Cavalos/genética , RNA Viral , SARS-CoV-2/genética , Imunoterapia , Vacinas Virais/genética
5.
Mol Ther ; 29(3): 1186-1198, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278563

RESUMO

Historically poor clinical results of tumor vaccines have been attributed to weakly immunogenic antigen targets, limited specificity, and vaccine platforms that fail to induce high-quality polyfunctional T cells, central to mediating cellular immunity. We show here that the combination of antigen selection, construct design, and a robust vaccine platform based on the Synthetically Modified Alpha Replicon RNA Technology (SMARRT), a self-replicating RNA, leads to control of tumor growth in mice. Therapeutic immunization with SMARRT replicon-based vaccines expressing tumor-specific neoantigens or tumor-associated antigen were able to generate polyfunctional CD4+ and CD8+ T cell responses in mice. Additionally, checkpoint inhibitors, or co-administration of cytokine also expressed from the SMARRT platform, synergized to enhance responses further. Lastly, SMARRT-based immunization of non-human primates was able to elicit high-quality T cell responses, demonstrating translatability and clinical feasibility of synthetic replicon technology for therapeutic oncology vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Neoplasias do Colo/terapia , Imunidade Celular/imunologia , Replicon , Animais , Vacinas Anticâncer/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Primatas , Células Tumorais Cultivadas , Vacinação
6.
Proc Natl Acad Sci U S A ; 109(31): 12286-93, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22761313

RESUMO

Using chemical germ-line mutagenesis, we screened mice for defects in the humoral immune response to a type II T-independent immunogen and an experimental alphavirus vector. A total of 26 mutations that impair humoral immunity were recovered, and 19 of these mutations have been positionally cloned. Among the phenovariants were bumble, cellophane, and Worker ascribed to mutations in Nfkbid, Zeb1, and Ruvbl2, respectively. We show that IκBNS, the nuclear IκB-like protein encoded by Nfkbid, is required for the development of marginal zone and peritoneal B-1 B cells and additionally required for extrafollicular antibody responses to T-independent and -dependent immunogens. Zeb1 is also required for marginal zone and peritoneal B-1 B-cell development as well as T-cell development, germinal center formation, and memory B-cell responses. Finally, Ruvbl2 is required for T-cell development and maximal T-dependent antibody responses. Collectively, the mutations that we identified give us insight into the points at which disruption of an antibody response can occur. All of the mutations identified to date directly affect lymphocyte development or function; none have an exclusive effect on cells of the innate immune system.


Assuntos
Subpopulações de Linfócitos B/imunologia , DNA Helicases/imunologia , Proteínas de Homeodomínio/imunologia , Imunidade Humoral/fisiologia , Fatores de Transcrição Kruppel-Like/imunologia , Proteínas/imunologia , ATPases Associadas a Diversas Atividades Celulares , Animais , Células Cultivadas , DNA Helicases/genética , Proteínas de Homeodomínio/genética , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas/genética , Linfócitos T/imunologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco
7.
Nat Immunol ; 13(6): 604-11, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22561605

RESUMO

Antibody class defines function in B cell immunity, but how class is propagated into B cell memory remains poorly understood. Here we demonstrate that memory B cell subsets unexpectedly diverged across antibody class through differences in the effects of major transcriptional regulators. Conditional genetic deletion of the gene encoding the transcription factor T-bet selectively blocked the formation and antigen-specific response of memory B cells expressing immunoglobulin G2a (IgG2a) in vivo. Cell-intrinsic expression of T-bet regulated expression of the transcription factor STAT1, steady-state cell survival and transcription of IgG2a-containing B cell antigen receptors (BCRs). In contrast, the transcription factor RORα and not T-bet was expressed in IgA(+) memory B cells, with evidence that knockdown of RORα mRNA expression and chemical inhibition of transcriptional activity also resulted in lower survival and BCR expression of IgA(+) memory B cells. Thus, divergent transcriptional regulators dynamically maintain subset integrity to promote specialized immune function in class-specific memory B cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Switching de Imunoglobulina/imunologia , Memória Imunológica/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Proteínas com Domínio T/imunologia , Animais , Linfócitos B/classificação , Citometria de Fluxo , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores de Antígenos de Linfócitos B/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/imunologia , Organismos Livres de Patógenos Específicos , Proteínas com Domínio T/genética , Transcrição Gênica/imunologia
8.
Genome Res ; 22(7): 1316-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22434427

RESUMO

Zinc-finger nucleases (ZFNs) drive highly efficient genome editing by generating a site-specific DNA double-strand break (DSB) at a predetermined site in the genome. Subsequent repair of this break via the nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways results in targeted gene disruption or gene addition, respectively. Here, we report that ZFNs can be engineered to induce a site-specific DNA single-strand break (SSB) or nick. Using the CCR5-specific ZFNs as a model system, we show that introduction of a nick at this target site stimulates gene addition using a homologous donor template but fails to induce significant levels of the small insertions and deletions (indels) characteristic of repair via NHEJ. Gene addition by these CCR5-targeted zinc finger nickases (ZFNickases) occurs in both transformed and primary human cells at efficiencies of up to ∼1%-8%. Interestingly, ZFNickases targeting the AAVS1 "safe harbor" locus revealed similar in vitro nicking activity, a marked reduction of indels characteristic of NHEJ, but stimulated far lower levels of gene addition-suggesting that other, yet to be identified mediators of nick-induced gene targeting exist. Introduction of site-specific nicks at distinct endogenous loci provide an important tool for the study of DNA repair. Moreover, the potential for a SSB to direct repair pathway choice (i.e., HDR but not NHEJ) may prove advantageous for certain therapeutic applications such as the targeted correction of human disease-causing mutations.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcação de Genes/métodos , Genoma Humano , Proteínas Recombinantes de Fusão/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Domínio Catalítico , Linhagem Celular Transformada , Linhagem Celular Tumoral , Clonagem Molecular , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA por Junção de Extremidades , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Histonas/metabolismo , Humanos , Mutação INDEL , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Receptores CCR5/genética , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA