Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 36(11-12): 752-763, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738678

RESUMO

Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Espermatogônias , Células-Tronco , Animais , Diferenciação Celular , Masculino , Camundongos , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Sci Adv ; 6(13): eaaz2129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32232159

RESUMO

The meiotic prophase I to metaphase I (PI/MI) transition requires chromosome desynapsis and metaphase competence acquisition. However, control of these major meiotic events is poorly understood. Here, we identify an essential role for SKP1, a core subunit of the SKP1-Cullin-F-box (SCF) ubiquitin E3 ligase, in the PI/MI transition. SKP1 localizes to synapsed chromosome axes and evicts HORMAD proteins from these regions in meiotic spermatocytes. SKP1-deficient spermatocytes display premature desynapsis, precocious pachytene exit, loss of PLK1 and BUB1 at centromeres, but persistence of HORMAD, γH2AX, RPA2, and MLH1 in diplonema. Strikingly, SKP1-deficient spermatocytes show sharply reduced MPF activity and fail to enter MI despite treatment with okadaic acid. SKP1-deficient oocytes exhibit desynapsis, chromosome misalignment, and progressive postnatal loss. Therefore, SKP1 maintains synapsis in meiosis of both sexes. Furthermore, our results support a model where SKP1 functions as the long-sought intrinsic metaphase competence factor to orchestrate MI entry during male meiosis.


Assuntos
Regulação da Expressão Gênica , Meiose/genética , Prófase Meiótica I/genética , Metáfase/genética , Proteínas Quinases Associadas a Fase S/genética , Alelos , Animais , Masculino , Mesotelina , Camundongos , Camundongos Transgênicos , Oócitos/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Fatores Sexuais
3.
Nat Commun ; 11(1): 2055, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345962

RESUMO

Breast cancer susceptibility gene II (BRCA2) is central in homologous recombination (HR). In meiosis, BRCA2 binds to MEILB2 to localize to DNA double-strand breaks (DSBs). Here, we identify BRCA2 and MEILB2-associating protein 1 (BRME1), which functions as a stabilizer of MEILB2 by binding to an α-helical N-terminus of MEILB2 and preventing MEILB2 self-association. BRCA2 binds to the C-terminus of MEILB2, resulting in the formation of the BRCA2-MEILB2-BRME1 ternary complex. In Brme1 knockout (Brme1-/-) mice, the BRCA2-MEILB2 complex is destabilized, leading to defects in DSB repair, homolog synapsis, and crossover formation. Persistent DSBs in Brme1-/- reactivate the somatic-like DNA-damage response, which repairs DSBs but cannot complement the crossover formation defects. Further, MEILB2-BRME1 is activated in many human cancers, and somatically expressed MEILB2-BRME1 impairs mitotic HR. Thus, the meiotic BRCA2 complex is central in meiotic HR, and its misregulation is implicated in cancer development.


Assuntos
Proteína BRCA2/metabolismo , Recombinação Homóloga/genética , Meiose/genética , Mitose/genética , Complexos Multiproteicos/metabolismo , Neoplasias/genética , Rad51 Recombinase/metabolismo , Alelos , Animais , Linhagem Celular Tumoral , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , Estabilidade Proteica , Espermatozoides/metabolismo
4.
PLoS Genet ; 14(5): e1007412, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29799838

RESUMO

The N6-methyladenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotes. The majority of m6A sites are found in the last exon and 3' UTRs. Here we show that the nuclear m6A reader YTHDC1 is essential for embryo viability and germline development in mouse. Specifically, YTHDC1 is required for spermatogonial development in males and for oocyte growth and maturation in females; Ythdc1-deficient oocytes are blocked at the primary follicle stage. Strikingly, loss of YTHDC1 leads to extensive alternative polyadenylation in oocytes, altering 3' UTR length. Furthermore, YTHDC1 deficiency causes massive alternative splicing defects in oocytes. The majority of splicing defects in mutant oocytes are rescued by introducing wild-type, but not m6A-binding-deficient, YTHDC1. YTHDC1 is associated with the pre-mRNA 3' end processing factors CPSF6, SRSF3, and SRSF7. Thus, YTHDC1 plays a critical role in processing of pre-mRNA transcripts in the oocyte nucleus and may have similar non-redundant roles throughout fetal development.


Assuntos
Processamento Alternativo/genética , Camundongos/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Oócitos/crescimento & desenvolvimento , Poliadenilação/genética , Fatores de Processamento de RNA/genética , Regiões 3' não Traduzidas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Núcleo Celular/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Desenvolvimento Embrionário/genética , Éxons/genética , Feminino , Masculino , Camundongos/genética , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Precursores de RNA/genética , Fatores de Processamento de RNA/deficiência , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo
5.
Curr Biol ; 27(10): 1498-1505.e6, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502657

RESUMO

The mammalian sex chromosomes have undergone profound changes during their evolution from an ancestral pair of autosomes [1-4]. Specifically, the X chromosome has acquired a paradoxical sex-biased function by redistributing gene contents [5, 6] and has generated a disproportionately high number of retrogenes that are located on autosomes and exhibit male-biased expression patterns [6]. Several selection-based models have been proposed to explain this phenomenon, including a model of sexual antagonism driving X inactivation (SAXI) [6-8] and a compensatory mechanism based on meiotic sex chromosome inactivation (MSCI) [6, 8-11]. However, experimental evidence correlating the function of X-chromosome-derived autosomal retrogenes with evolutionary forces remains limited [12-17]. Here, we show that the deficiency of Rpl10l, a murine autosomal retrogene of Rpl10 with testis-specific expression, disturbs ribosome biogenesis in late-prophase spermatocytes and prohibits the transition from prophase into metaphase of the first meiotic division, resulting in male infertility. Rpl10l expression compensates for the lack of Rpl10, which exhibits a broad expression pattern but is subject to MSCI during spermatogenesis. Importantly, ectopic expression of RPL10L prevents the death of cultured RPL10-deficient somatic cells, and Rpl10l-promoter-driven transgenic expression of Rpl10 in spermatocytes restores spermatogenesis and fertility in Rpl10l-deficient mice. Our results demonstrate that Rpl10l plays an essential role during the meiotic stage of spermatogenesis by compensating for MSCI-mediated transcriptional silencing of Rpl10. These data provide direct evidence for the compensatory hypothesis and add novel insight into the evolution of X-chromosome-derived autosomal retrogenes and their role in male fertility.


Assuntos
Meiose , Proteínas Ribossômicas/metabolismo , Espermatogênese , Inativação do Cromossomo X , Animais , Proliferação de Células , Células Cultivadas , Feminino , Células HEK293 , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Filogenia , Proteína Ribossômica L10 , Ribossomos/metabolismo , Espermatócitos/citologia , Espermatócitos/fisiologia , Testículo/citologia , Testículo/fisiologia
6.
Biol Reprod ; 88(6): 159, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677977

RESUMO

The mammalian X chromosome contains a large number of multicopy genes that are expressed during spermatogenesis. The roles of these genes during germ cell development and the functional significance of gene multiplication remain mostly unexplored, as the presence of multicopy gene families poses a challenge for genetic studies. Here we report the deletion of a 1.1-Mb segment of the mouse X chromosome that is syntenic with the human Xq22.1 region and contains 20 genes that are expressed predominantly in testis and brain, including three members of the nuclear export factor gene family (Nxf2, Nxf3, and Nxf7) and five copies of preferentially expressed antigen in melanoma-like 3 (Pramel3). We have shown that germline-specific Cre/loxP-mediated deletion of this 1.1-Mb segment is efficient and causes defective chromosomal synapsis, meiotic arrest, and sterility in male mice. Our results demonstrate that this 1.1-Mb region contains one or more novel X-linked factors that are essential for male meiosis.


Assuntos
Fertilidade/genética , Meiose/genética , Espermatogênese/genética , Testículo/metabolismo , Cromossomo X/genética , Animais , Sequência de Bases , Células Germinativas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Deleção de Sequência , Contagem de Espermatozoides , Cromossomo X/metabolismo
7.
PLoS Genet ; 8(11): e1002996, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133398

RESUMO

CHTF18 (chromosome transmission fidelity factor 18) is an evolutionarily conserved subunit of the Replication Factor C-like complex, CTF18-RLC. CHTF18 is necessary for the faithful passage of chromosomes from one daughter cell to the next during mitosis in yeast, and it is crucial for germline development in the fruitfly. Previously, we showed that mouse Chtf18 is expressed throughout the germline, suggesting a role for CHTF18 in mammalian gametogenesis. To determine the role of CHTF18 in mammalian germ cell development, we derived mice carrying null and conditional mutations in the Chtf18 gene. Chtf18-null males exhibit 5-fold decreased sperm concentrations compared to wild-type controls, resulting in subfertility. Loss of Chtf18 results in impaired spermatogenesis; spermatogenic cells display abnormal morphology, and the stereotypical arrangement of cells within seminiferous tubules is perturbed. Meiotic recombination is defective and homologous chromosomes separate prematurely during prophase I. Repair of DNA double-strand breaks is delayed and incomplete; both RAD51 and γH2AX persist in prophase I. In addition, MLH1 foci are decreased in pachynema. These findings demonstrate essential roles for CHTF18 in mammalian spermatogenesis and meiosis, and suggest that CHTF18 may function during the double-strand break repair pathway to promote the formation of crossovers.


Assuntos
Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Recombinação Genética/genética , Espermatogênese/genética , ATPases Associadas a Diversas Atividades Celulares , Animais , Células Germinativas/metabolismo , Histonas/metabolismo , Humanos , Infertilidade/genética , Masculino , Prófase Meiótica I , Camundongos , Proteínas Nucleares , Rad51 Recombinase/metabolismo , Espermatozoides/patologia
8.
PLoS Genet ; 6(11): e1001190, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079677

RESUMO

Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/) (-)) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/) (-) testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/) (-) ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/) (-) oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Meiose/genética , Mutação/genética , Recombinação Genética/genética , Complexo Sinaptonêmico/metabolismo , Aneuploidia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Feto/citologia , Feto/metabolismo , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Especificidade de Órgãos/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cromossomos Sexuais/genética , Espermatogênese/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Complexo Sinaptonêmico/ultraestrutura , Proteínas Supressoras de Tumor/metabolismo
9.
Cell Motil Cytoskeleton ; 65(7): 539-52, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18421703

RESUMO

A-kinase anchoring proteins (AKAPs) bind to protein kinase A (PKA) via an amphipathic helix domain that interacts with a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ROPN1, ASP, SP17, and CABYR) also contain a highly conserved RII dimerization/docking (R2D2) domain, suggesting all four proteins may interact with all AKAPs in a manner similar to RII. All four of these proteins were originally detected in the flagellum of mammalian sperm. In this report, we demonstrate that all four R2D2 proteins are expressed in a wide variety of tissues and three of the proteins SP17, CABYR, and ASP are located in motile cilia of human bronchus and fallopian tubes. In addition, we detect SP17 in primary cilia. We also provide evidence that ROPN1 and ASP bind to a variety of AKAPs and this interaction can be disrupted with anchoring inhibitor peptides. The interaction of SP17 and CABYR with AKAPs appears to be much more limited. None of the R2D2 proteins appears to bind cAMP, a fundamental characteristic of the regulatory subunits of PKA. These observations suggest that R2D2 proteins utilize docking interactions with AKAPs to accomplish their function of regulating cilia and flagella. Based on location, affinity for AKAPs and lack of affinity for cAMP, it appears that each R2D2 protein has a unique role in this process.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Sequência de Aminoácidos , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a Calmodulina , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , AMP Cíclico/metabolismo , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura , Distribuição Tecidual , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
10.
FASEB J ; 22(2): 374-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17873102

RESUMO

We explored whether exposure of mammalian germ line stem cells to adeno-associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ cell-depleted syngeneic recipient testes, resulting in colonization of the recipient testes by transgenic donor cells. Mating of recipient males to wild-type females yielded 10% transgenic offspring. To broaden the approach to nonrodent species, AAV-transduced germ cells from goats were transplanted to recipient males in which endogenous germ cells had been depleted by fractionated testicular irradiation. Transgenic germ cells colonized recipient testes and produced transgenic sperm. When semen was used for in vitro fertilization (IVF), 10% of embryos were transgenic. Here, we report for the first time that AAV-mediated transduction of mammalian germ cells leads to transmission of the transgene through the male germ line. Equally important, this is also the first report of transgenesis via germ cell transplantation in a nonrodent species, a promising approach to generate transgenic large animal models for biomedical research.


Assuntos
Dependovirus/genética , Células Germinativas/metabolismo , Células Germinativas/transplante , Transplante de Células-Tronco , Células-Tronco/metabolismo , Transdução Genética/métodos , Transgenes/genética , Animais , Células Cultivadas , Vetores Genéticos/genética , Cabras , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Túbulos Seminíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA