Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(7): e13947, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523361

RESUMO

Nocardiosis, caused by Nocardia seriolae, has been a prominent disease in Southeast Asian aquaculture in the last three decades. This granulomatous disease reported in various fish species is responsible for significant economic losses. This study investigated the pathogenicity of N. seriolae in three cultured species in Taiwan: Nile tilapia (omnivore), milkfish (herbivore) and Asian seabass (carnivore). Administration of an infective dose of 1 × 106 CFU/ fish in tilapia, seabass and milkfish demonstrated mortalities of 100%, 90% and 75%, respectively. Additionally, clinical signs namely, granuloma and lesions displayed varying intensities between the groups and pathological scores. Polymerase chain reaction (PCR) amplification specific for N. seriolae was confirmed to be positive (432 bp) using NS1/NG1 primers. Post-mortem lesions revealed the absence of granulomas in tilapia and milkfish and their presence in the seabass. Interestingly, the gut in tilapia showed an influx of eosinophils suggesting its role during the acute stages of infection. However, post-challenge, surviving milkfish exhibited granulomatous formations, while surviving seabass progressed toward healing and tissue repair within sampled tissues. Overall, in conclusion, these results demonstrate the versatility in the immunological ability of individual Perciformes to contain this pathogen as a crucial factor that influences its degree of susceptibility.


Assuntos
Ciclídeos , Doenças dos Peixes , Nocardiose , Nocardia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Nocardia/patogenicidade , Nocardia/genética , Nocardia/isolamento & purificação , Nocardiose/veterinária , Nocardiose/microbiologia , Taiwan , Aquicultura , Granuloma/veterinária , Granuloma/microbiologia , Granuloma/patologia
2.
J Aquat Anim Health ; 36(1): 70-83, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143312

RESUMO

OBJECTIVE: As part of the National Disease Surveillance Program for Taiwanese Aquaculture, we investigated the causative agent of disease outbreaks in farmed Chicken Grunts Parapristipoma trilineatum. METHODS: In this study, outbreak cases on two separate farms were noticed in coastal Pingtung County, Taiwan. In total, 50 juvenile fish showing clinical signs (such as emaciation and erratic swimming behavior) and broodstock (two females and two males) from both farms were collected to perform gross lesion assessment, histopathological examination, and molecular identification of the pathogen. RESULT: Clinical symptoms were infected fish exhibited erratic swimming behavior, such as whirling and floating on the surface of the water. In the following months, cumulative mortality had reached 19% and 24%, respectively. The gross lesions in the infected fish included white oval cysts in the muscle, serosa of the internal organs, sclera of the eyes, and cerebral meninges. After conducting a wet mount examination of cysts using a light microscope, we observed a significant quantity of spores with morphological characteristics, suggesting their affiliation with the Myxosporea group. The spores were semiquadrate, with four tiny suture notches at the periphery; the mean spore length was 7.3 µm (SD = 0.5), and the mean spore width was 8.2 µm (SD = 0.6). The mean length and width of the pyriform polar capsules (nematocysts) were 3.6 µm (SD = 0.5) and 2.2 µm (SD = 0.5), respectively. The 18S and 28S ribosomal RNA sequences of these specimens were identical to those of Kudoa lutjanus. CONCLUSION: As this was the first time an outbreak of K. lutjanus in Chicken Grunts was confirmed, its reappearance with substantial mortality should serve as a warning to the aquaculture industry.


Assuntos
Cistos , Doenças dos Peixes , Myxozoa , Doenças Parasitárias em Animais , Feminino , Masculino , Animais , Galinhas/genética , DNA Ribossômico/genética , Sequência de Bases , RNA Ribossômico 18S/genética , Peixes/genética , Myxozoa/genética , Surtos de Doenças/veterinária , Cistos/epidemiologia , Cistos/genética , Cistos/veterinária , Doenças dos Peixes/epidemiologia , Filogenia , Doenças Parasitárias em Animais/epidemiologia
3.
J Fish Dis ; 46(11): 1257-1268, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584202

RESUMO

Nocardia seriolae causes chronic nocardiosis in various marine and freshwater aquatic animals; however, grouper species have rarely been investigated. This study evaluated the pathogenicity of nocardiosis following N. seriolae infection in the orange-spotted grouper Epinephelus coioides. Nine identified genetic isolates of N. seriolae were tested in vivo using the intraperitoneal method and observed daily for 35 days. The most virulent isolate was then used to evaluate transmission through different routes (intraperitoneal IP, intramuscular IM, oral OR, and immersion IS) in the same fish model and was observed daily for 42 days. The results showed mild variation in virulence among N. seriolae isolates. AOD107132-2 K and OT103003-N11 strains displayed the highest and lowest risk virulence, respectively, based on the accumulation and kinetics of mortality. IM and IP administrations showed an early phase response with early mortality by 5 dpc (30%-100%), while slower kinetics of nocardiosis occurred in the OR and IS routes with slow mortality at 35 dpc (4%-8%). Histopathology revealed typical granulomas, confirming the progression of nocardiosis in the diseased fish. These results provide the basis for further studies on the virulence profile of N. seriolae in Taiwan and a well-suited route of administration in orange-spotted groupers for further prevention development.

4.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298593

RESUMO

The Chinese softshell turtle (CST; Pelodiscus sinensis) is a freshwater aquaculture species of substantial economic importance that is commercially farmed across Asia, particularly in Taiwan. Although diseases caused by the Bacillus cereus group (Bcg) pose a major threat to commercial CST farming systems, information regarding its pathogenicity and genome remains limited. Here, we investigated the pathogenicity of Bcg strains isolated in a previous study and performed whole-genome sequencing. Pathogenicity analysis indicated that QF108-045 isolated from CSTs caused the highest mortality rate, and whole-genome sequencing revealed that it was an independent group distinct from other known Bcg genospecies. The average nucleotide identity compared to other known Bcg genospecies was below 95%, suggesting that QF108-045 belongs to a new genospecies, which we named Bacillus shihchuchen. Furthermore, genes annotation revealed the presence of anthrax toxins, such as edema factor and protective antigen, in QF108-045. Therefore, the biovar anthracis was assigned, and the full name of QF108-045 was Bacillus shihchuchen biovar anthracis. In addition to possessing multiple drug-resistant genes, QF108-045 demonstrated resistance to various types of antibiotics, including penicillins (amoxicillin and ampicillin), cephalosporins (ceftifour, cephalexin, and cephazolin), and polypeptides, such as vancomycin.


Assuntos
Bacillus anthracis , Bacillus , Tartarugas , Animais , Bacillus/genética , Bacillus anthracis/genética , Bacillus cereus/genética , Genômica , Tartarugas/genética , Tartarugas/microbiologia , Virulência/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835242

RESUMO

Streptococcus iniae is a Gram-positive bacterium and is considered a harmful aquaculture pathogen worldwide. In this study, S. iniae strains were isolated from East Asian fourfinger threadfin fish (Eleutheronema tetradactylum) reared on a farm in Taiwan. A transcriptome analysis of the head kidney and spleen was performed in the fourfinger threadfin fish 1 day after infection using the Illumina HiSeq™ 4000 platform for RNA-seq to demonstrate the host immune mechanism against S. iniae. A total of 7333 genes based on the KEGG database were obtained after the de novo assembly of transcripts and functional annotations. Differentially expressed genes (DEGs) (2-fold difference) were calculated by comparing the S. iniae infection and phosphate-buffered saline control group gene expression levels in each tissue sample. We identified 1584 and 1981 differentially expressed genes in the head kidney and spleen, respectively. Based on Venn diagrams, 769 DEGs were commonly identified in both the head kidney and spleen, and 815 and 1212 DEGs were specific to the head kidney and spleen, respectively. The head-kidney-specific DEGs were enriched in ribosome biogenesis. The spleen-specific and common DEGs were found to be significantly enriched in immune-related pathways such as phagosome, Th1, and Th2 cell differentiation; complement and coagulation cascades; hematopoietic cell lineage; antigen processing and presentation; and cytokine-cytokine receptor interactions, based on the KEGG database. These pathways contribute to immune responses against S. iniae infection. Inflammatory cytokines (IL-1ß, IL-6, IL-11, IL-12, IL-35, and TNF) and chemokines (CXCL8 and CXCL13) were upregulated in the head kidney and spleen. Neutrophil-related genes, including phagosomes, were upregulated post-infection in the spleen. Our results could offer a strategy for the treatment and prevention of S. iniae infection in fourfinger threadfin fish.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Animais , Peixes , Rim Cefálico , Baço , Streptococcus iniae
6.
J Fish Dis ; 46(4): 405-416, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36628981

RESUMO

Piscine nocardiosis, caused by Nocardia seriolae, is a refractory granulomatous disease in South-East Asian aquaculture. This study investigates the virulence of nocardial lipids essential for pathogenesis among Actinomycetes. Petroleum ether (PE) was used to selectively delipidate two groups of N. seriolae, namely, live cell (LC) and killed cell (KC); resulting in delipidated live cell (DLC) and delipidated killed cell (DKC), respectively. Changes post-delipidation on genus characteristics, such as loss in acid-fast nature and resistance to lysozyme were observed. Transmission electron microscopy revealed notable changes in the lipid layer. Additionally, Lates calcarifer, Asian seabass intraperitoneally injected with LC and DLC had mortality rates of 90% and 50%, respectively, with the latter exhibiting a delay in mortality. Reverse-transcription quantitative PCR (RT-qPCR) analysis of host cytokines from the spleen and head kidney showed delipidation contributed to the induction of an immune response with increased transcriptional levels of interferon-γ (ifn-γ). Histopathological samples collected on day 7 post-inoculation displayed a varied granulomatous response between the treatment groups and scored for pathological changes. These findings affirm that the virulence of the lipids remains independent of the living state of the cell, significantly altering the immune and granulomatous responses in L. calcarifer to N. seriolae.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Animais , Virulência , Nocardiose/veterinária , Parede Celular , Lipídeos
7.
Dev Comp Immunol ; 139: 104588, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372114

RESUMO

Vibrio harveyi is a Gram-negative bacterium that causes vibriosis in various aquaculture species, including the orange-spotted grouper (Epinephelus coioides). Bacterial flagellin is a potent pathogen-associated molecule that stimulates the innate and adaptive immune systems through toll-like receptor 5 (TLR5) signaling. In this study, we isolated V. harveyi flagellin A (VhFliA) gene from V. harveyi (originated from orange-spotted grouper) and investigated the in vivo activities of recombinant VhFliA protein. Multiple sequence alignment showed that the amino acid sequence of VhFliA has conserved domains of N- and C-terminals (D0 and D1) and a middle variable (MV) region. We produced the VhFliA recombinant protein (wild type (WT)-VhFliA) by Escherichia coli and investigated its in vivo biological activity. Additionally, we prepared the VhFliA recombinant proteins with deletion of domains (ΔMV-VhFliA and ΔD0MV-VhFliA) to identify the domain for biological activity in the orange-spotted grouper. WT and ΔMV-VhFliA induced the expression of inflammatory cytokines (IFNγ, IL-1ß, and IL-8) in groupers. However, ΔD0MV-VhFliA did not induce the expression of inflammatory cytokines. Additionally, to demonstrate the applicability of recombinant VhFliA to teleost species, we performed an in vivo assay of the recombinant proteins in koi carp (Cyprinus carpio). WT-VhFliA stimulates the expression of inflammatory cytokines (IL-1ß, IL-6, and IL-8) in carp. ΔMV-VhFliA did not upregulate IL-1ß and IL-6, whereas ΔD0MV-VhFliA induced expression in carp. These findings showed the potential of VhFliA as an effective immune stimulant adjuvant and comparative studies of flagellin - TLR5 signaling in teleosts.


Assuntos
Carpas , Flagelina , Animais , Carpas/genética , Interleucina-6 , Interleucina-8 , Proteínas Recombinantes/genética
8.
Animals (Basel) ; 11(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34438742

RESUMO

Francisella orientalis (Fo) is considered to be one of the major pathogens of tilapia because of the high mortalities observed during outbreaks. Other cichlids belonging to the same family (Cichlidae) as tilapia are also quite susceptible to this pathogen. On various occasions, Fo has also been isolated from other warm water fish, including three-line grunt, hybrid striped bass, French grunt, Caesar grunt, and Indo-Pacific reef fish. However, only a few studies have reported the pathogenicity of Francisella orientalis in ornamental cichlid fish. This study fulfills Koch's postulates by showing that a strain of Fo obtained from green Texas cichlid (Herichthys cyanoguttatus) was able to produce the same pathogenicity in healthy fish. A mortality of 100% was observed after healthy green Texas cichlid were experimentally injected with Fo at a dose of 8.95 × 105 CFU/fish. DNA extracted from the organs of predilection (spleen, head kidney) gave positive results by PCR for all fish that died during the experimental period. Spleen and head kidney presented with multifocal white nodules in the affected fish, corresponding to typical vacuolated granulomas on histopathological examination of the tissues. Based on the results of this study, it is evident that Fo can indeed infect green Texas cichlid and produce a disease typical of francisellosis.

9.
Fish Shellfish Immunol ; 111: 36-48, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33444737

RESUMO

Francisella noatunensis subsp. orientalis (Fno) is a gram-negative intracellular bacterium identified in many fish species worldwide, including cultured Nile tilapia (Oreochromis niloticus) in Taiwan. To investigate the gene expression responses to Fno infection, we performed transcriptome analysis of the head kidney and spleen in Nile tilapia using RNA-seq. Total RNA was extracted from the head kidney and spleen of infected (Fno-injected) and uninfected (control) tilapia at 1-day and 2-days post-infection, and RNA-seq was performed using the Illumina HiSeq™ 4000 platform. After de novo assembly, a total of 106,534 transcripts were detected. These transcripts were annotated and categorized into a total of 7171 genes based on the KEGG pathway database. Differentially expressed genes (DEGs) were significantly (2-fold difference comparing Fno and PBS groups at each time point) enriched in the immune-related pathways, including the following: complement and coagulation cascades, cytokine-cytokine receptor interaction, hematopoietic cell lineage, lysosome, phagosome. We identified the upregulation of inflammatory cytokine-, apoptosis-, and neutrophil-related genes, and downregulation of complement- and lymphocyte-related genes. Additionally, we found the induction of natural resistance-associated macrophage protein 1 (NRAMP1) and heme responsive gene-1 (HRG1). Anemia of inflammation, caused by intracellular iron storage in spleen after Fno infection, was also observed. This study provides natural disease control strategies against Fno infection in tilapia. It is suggested that intercellular iron storage is a host protection strategy.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/genética , Transcriptoma/imunologia , Animais , Proteínas de Peixes/imunologia , Francisella/fisiologia , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia
10.
J Fish Dis ; 43(9): 1097-1106, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32700447

RESUMO

Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106  CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.


Assuntos
Doenças dos Peixes/microbiologia , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Bass , Ciclídeos , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/veterinária , Francisella/isolamento & purificação , Infecções por Bactérias Gram-Negativas/mortalidade , Granuloma/microbiologia , Granuloma/veterinária , Rim Cefálico/patologia , Injeções Intraperitoneais , Baço/patologia
11.
Vaccines (Basel) ; 8(2)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260212

RESUMO

Francisella noatunensis subsp. orientalis (Fno), an intracellular bacterium, causes systemic granulomatous diseases, resulting in high mortality and huge economic losses in Taiwanese tilapia farming. In this study, we tested the efficacy of a formalin-killed Fno vaccine in cultured tilapia. Fno was isolated from diseased tilapia, inactivated with formalin, and mixed with the mineral oil base adjuvant (MontanideTM ISA 763 AVG). A total of 300 tilapia were divided into two groups. The experimental group was intraperitoneally injected with 0.1 mL of vaccine, which was substituted with phosphate-buffered saline (PBS) in the control group. A booster was administered at 2 weeks post-immunization. Tilapia were challenged at 6 weeks post primary immunization by intraperitoneal (IP) injection and immersion methods. Mortality was recorded at 21 and 60 days. The results revealed that the vaccine induced a greater antibody titer and led to 71% and 76% of relative percent survival (RPS) after the IP and immersion challenge. The transcripts of proinflammatory cytokines and immune-related genes, including interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNFα), C-X-C motif chemokine ligand 8 (CXCL8), and interleukin-17C (IL-17C), were significantly upregulated after vaccination. Additionally, vaccinated fish had lower bacterial loads in the blood and lower granuloma intensities in the kidney, spleen, liver, and gill than control fish. The results in this study demonstrate that the inactivated Fno vaccine could be an essential resource in Taiwanese tilapia farming.

12.
Fish Shellfish Immunol ; 92: 842-850, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284046

RESUMO

Streptococcus dysgalactiae is a gram-positive bacterium and a harmful aquaculture pathogen. To investigate the immune response against S. dysgalactiae, we performed transcriptome analysis of the head kidney and spleen of cobia (Rachycentron canadum) using RNA-seq. Total RNA was extracted from the head kidney and spleen of cobia, 1 and 2 days after treatment with S. dysgalactiae or control PBS. After RNA purification and cDNA library generation, sequencing was performed using the Illumina HiSeq™ 4000 platform. The filtering and de novo assembling transcripts were annotated using several databases. To identify differentially expressed genes (DEGs) between the S. dysgalactiae and PBS groups, the mapped values of fragments per kilobase of transcripts per million fragments were calculated. After de novo assembly, a total of 106,984 transcripts were detected, with an N50 of 3020 bp. These transcripts were annotated and categorised into a total of 7608 genes based on the KEGG pathway database. DEGs (2-fold difference) were calculated by comparing the S. dysgalactiae and PBS control group gene expression levels at each time point. The DEGs were mainly annotated into signal transduction and immune system categories, based on the KEGG database. The DEGs were significantly enriched in the immune-related pathways - "cytokine-cytokine receptor interaction", "complement and coagulation cascades", and "hematopoietic cell linage". In this study, immune-related genes responding to S. dysgalactiae were detected, and several immune system pathways were categorized. We identified the IL17C-related pathway for inducing the expression of pro-inflammatory cytokine genes (IL-1ß, IL-6, and IFNγ). Additionally, neutrophil-related genes (CSF3, CD121, and CD114) were induced in the spleen after S. dysgalactiae infection. It was suggested that these pathways contribute to immune responses against S. dysgalactiae infection. The data revealed in this study may offer improved strategies against S. dysgalactiae infection in cobia.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Transcriptoma , Animais , Perfilação da Expressão Gênica/veterinária , Rim Cefálico/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Baço/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus/fisiologia
13.
J Fish Dis ; 42(5): 643-655, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30715744

RESUMO

Francisella noatunensis subsp. orientalis is a causative agent of systemic granulomatous disease in tilapia. The present study was designed to understand the genetic and phenotypic diversities among Taiwanese Fno isolates obtained from tilapia (n = 17) and green Texas cichlid (Herichthys cyanoguttatus) (n = 1). The enzymatic profiles of the isolates were studied using the API ZYM system. Phylogenetic tree analysis of the 16S rRNA and housekeeping gene and pulsed-field gel electrophoresis (PFGE) were carried out to determine the genotypic characters of all isolates. The phylogenetic tree showed similarity of 99%-100% nucleotide sequences of 16S rRNA and housekeeping genes compared to the Fno references genes from GenBank database. Comparatively, the results revealed an identical profile of enzymatic and PFGE pattern which was distincted from that of F. philomiragia. To understand the pathogenicity, the isolates were intraperitoneal injected to tilapia the gross lesions were observed concomitant with natural outbreak. Median lethal dose upon Nile tilapia and red tilapia were 9.06 × 103 CFU/fish and 2.08 × 102 CFU/fish, respectively. Thus, our data provide understanding the epidemiology of Taiwanese Fno isolates, and help in development of future control and prevention.


Assuntos
Ciclídeos , Doenças dos Peixes/microbiologia , Francisella/genética , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Distribuição Aleatória , Taiwan , Virulência
14.
Fish Shellfish Immunol ; 41(2): 250-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218275

RESUMO

Streptococcus agalactiae is a Gram-positive bacterium and a severe aquaculture pathogen that can infect a wide range of warmwater fish species. The outer-surface proteins in bacterial pathogens play an important role in pathogenesis. We evaluated the immunogenicity of two of the identified surface proteins namely phosphoglycerate kinase (PGK) and ornithine carbamoyl-transferase (OCT). PGK and OCT were over-expressed and purified from Escherichia coli and used as the subunit vaccines in tilapia. Tilapia immunized with the S. agalactiae modified bacteria vaccine (whole cell preparations with recombinant PGK and OCT proteins) individually were tested for the efficacy. OCT and PGK combined with WC had a higher survival rate. A high-level protection and significant specific antibody responses against S. agalactiae challenge was observed upon the vaccinated tilapia with the purified PGK protein and S. agalactiae whole cells. The specific antibody titer against S. agalactiae antigen suggested that increased antibody titers were correlated with post-challenge survival rate. Il-1ß expression profile was higher in PGK + WC-treated group. Tnf-α expression in the PGK + WC group was significantly increased. Taken together, our results suggested the combinations of recombinant protein and whole cell may elicit immune responses that reach greater protection than that of individual S. agalactiae components.


Assuntos
Vacinas Bacterianas/farmacologia , Ciclídeos , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Fosfoglicerato Quinase/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/imunologia , Análise de Variância , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Western Blotting , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Doenças dos Peixes/prevenção & controle , Interleucina-1beta/imunologia , Ornitina Carbamoiltransferase/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Fator de Necrose Tumoral alfa/imunologia
15.
Vaccine ; 32(51): 7014-7020, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25192808

RESUMO

Vaccination is the most effective means of preventing infectious diseases; however, few vaccines are effective against Streptococcus iniae (S. iniae) in grouper. This work presents an efficacious and safe vaccine against S. iniae infections in the grouper Epinephelus coioides. The vaccine candidate was the S. iniae GSI-310 strain. The vaccination was administered by intraperitoneal injection, and consisted of formalin-inactivated antigens combined with an AS-F or ISA763A adjuvant. Peripheral blood samples were collected for RT-qPCR and phagocytosis and agglutination assays. Our results indicated that immunoglobulin M (igm) was maximally expressed in the two vaccinated groups at 3 months post-secondary vaccination (PSV). A significant upregulation of mRNA expression for interleukin-1ß (il-1ß) and tumor necrosis factor-α (tnf-α) was also observed in fish treated with antigens combined with ISA763A, which peaked at 3 months PSV. In fish treated with antigens combined with AS-F, il-1ß and tnf-α expression peaked at 14 days post-primary vaccination (PPV). Phagocytic activity and index increased significantly in the two vaccinated groups. Furthermore, fish in the two vaccinated groups exhibited significantly elevated agglutination titers compared to fish in the control group, in which almost no agglutination reaction was detected. In the efficacy test, the vaccinated and control groupers were treated with S. iniae at 1, 3, and 6 months PSV. The relative percentage survival (RPS) values of antigens with AS-F and antigens with ISA763A were both 100% at 1 and 3 months PSV; at 6 months PSV, the RPS values for these groups were 100% and 97.7%, respectively. Furthermore, the level of protection observed in the field trial closely resembled that achieved on a laboratory scale. Therefore, the proposed vaccine mixed with AS-F or ISA763A improved immune responses and provided safe and long-lasting protection in farmed groupers.


Assuntos
Doenças dos Peixes/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/imunologia , Streptococcus/isolamento & purificação , Testes de Aglutinação , Animais , Anticorpos Antibacterianos/sangue , Bass , Imunização/métodos , Imunoglobulina M/sangue , Injeções Intraperitoneais , Interleucina-1beta/análise , Leucócitos Mononucleares/imunologia , Fagocitose , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Streptococcus/imunologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/análise , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA