Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593069

RESUMO

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , Mamíferos
2.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669573

RESUMO

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Assuntos
Aedes , Vírus da Dengue , Mosquitos Vetores , Simbiose , Zika virus , Animais , Aedes/microbiologia , Aedes/virologia , Vírus da Dengue/fisiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/microbiologia , Zika virus/fisiologia , Dengue/transmissão , Dengue/virologia , Dengue/prevenção & controle , Microbioma Gastrointestinal , Acetobacteraceae/fisiologia , Feminino , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Flavivirus/fisiologia , Flavivirus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
3.
Nat Commun ; 15(1): 780, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278841

RESUMO

The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.


Assuntos
Vírus de RNA , Camundongos , Animais , Ubiquitinação , Linhagem Celular , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Imunidade Inata , Ubiquitina-Proteína Ligases/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo
4.
Br J Pharmacol ; 180(17): 2250-2265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37076137

RESUMO

BACKGROUND AND PURPOSE: Renal fibrosis is a common feature of chronic kidney disease. Myeloid fibroblasts and macrophages contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying myeloid fibroblast activation and macrophage polarization are not fully understood. In this study, we examined the role of Jumonji domain-containing protein-3 (JMJD3) in myeloid fibroblast activation, macrophage polarization, and renal fibrosis development in a preclinical model of obstructive nephropathy. EXPERIMENTAL APPROACH: To examine the role of JMJD3 in renal fibrosis, we generated mice with global or myeloid cell-specific deletion of JMJD3, and we treated wild-type mice with vehicle or GSK-J4 (selective JMJD3 inhibitor). Mice were subjected to unilateral ureteral obstructive injury to induce renal fibrosis. KEY RESULTS: JMJD3 expression was significantly increased in the kidneys during the development of renal fibrosis, which was associated with an increase in H3K27 dimethylation. Mice with either global or myeloid JMJD3 deficiency exhibited significantly reduced total collagen deposition and extracellular matrix protein production, myeloid fibroblast activation and M2 macrophage polarization in the obstructed kidney. Moreover, IFN regulatory factor 4, a mediator of M2 macrophage polarization, was significantly induced in the obstructed kidneys, which was abolished by JMJD3 deficiency. Furthermore, pharmacological inhibition of JMJD3 with GSK-J4 attenuated kidney fibrosis, reduced myeloid fibroblast activation and suppressed M2 macrophage polarization in the obstructed kidney. CONCLUSION AND IMPLICATIONS: Our study identifies JMJD3 as a critical regulator of myeloid fibroblast activation, macrophage polarization, and renal fibrosis development. Therefore, JMJD3 may represent a promising therapeutic target for chronic kidney disease.


Assuntos
Ativação de Macrófagos , Insuficiência Renal Crônica , Camundongos , Animais , Rim/patologia , Macrófagos/metabolismo , Fibrose , Insuficiência Renal Crônica/metabolismo , Fibroblastos/patologia , Camundongos Endogâmicos C57BL
5.
Methods Mol Biol ; 2585: 71-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36331766

RESUMO

Flow cytometry is a technology that rapidly detects and measures physical and chemical characteristics of single cells or particles. It is a powerful tool for many areas of research, in particular, immunology, which allows for simultaneous analysis of different immune cell populations in a tissue. Here we describe the procedures to quantify and/or purify various B fractions in mouse bone marrows by flow cytometry using their signature surface markers. This method is useful to study B-cell development during steady-state or emergency hematopoiesis such as viral infections.


Assuntos
Linfócitos B , Medula Óssea , Camundongos , Animais , Citometria de Fluxo/métodos , Hematopoese , Células da Medula Óssea
6.
mBio ; 13(6): e0268722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377866

RESUMO

Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus , Humanos , Animais , Camundongos , Vírus Chikungunya/genética , Febre de Chikungunya/patologia , Antivirais/farmacologia , Ubiquitinas , Replicação Viral
7.
Cells ; 10(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34831280

RESUMO

Renal fibrosis is a pathologic feature of chronic kidney disease, which can lead to end-stage kidney disease. Myeloid fibroblasts play a central role in the pathogenesis of renal fibrosis. However, the molecular mechanisms pertaining to myeloid fibroblast activation remain to be elucidated. In the present study, we examine the role of signal transducer and activator of transcription 6 (STAT6) in myeloid fibroblast activation, macrophage polarization, and renal fibrosis development in a mouse model of folic acid nephropathy. STAT6 is activated in the kidney with folic acid nephropathy. Compared with folic-acid-treated wild-type mice, STAT6 knockout mice had markedly reduced myeloid fibroblasts and myofibroblasts in the kidney with folic acid nephropathy. Furthermore, STAT6 knockout mice exhibited significantly less CD206 and PDGFR-ß dual-positive fibroblast accumulation and M2 macrophage polarization in the kidney with folic acid nephropathy. Consistent with these findings, STAT6 knockout mice produced less extracellular matrix protein, exhibited less severe interstitial fibrosis, and preserved kidney function in folic acid nephropathy. Taken together, these results have shown that STAT6 plays a critical role in myeloid fibroblasts activation, M2 macrophage polarization, extracellular matrix protein production, and renal fibrosis development in folic acid nephropathy. Therefore, targeting STAT6 may provide a novel therapeutic strategy for fibrotic kidney disease.


Assuntos
Polaridade Celular , Fibroblastos/metabolismo , Ácido Fólico/metabolismo , Nefropatias/metabolismo , Macrófagos/metabolismo , Células Mieloides/patologia , Fator de Transcrição STAT6/deficiência , Animais , Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/patologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/metabolismo
8.
Front Immunol ; 12: 735014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512669

RESUMO

A hallmark of chronic kidney disease is renal fibrosis, which can result in progressive loss of kidney function. Currently, there is no effective therapy for renal fibrosis. Therefore, there is an urgent need to identify potential drug targets for renal fibrosis. In this study, we examined the effect of a selective STAT6 inhibitor, AS1517499, on myeloid fibroblast activation, macrophage polarization, and development of renal fibrosis in two experimental murine models. To investigate the effect of STAT6 inhibition on myeloid fibroblast activation, macrophage polarization, and kidney fibrosis, wild-type mice were subjected to unilateral ureteral obstruction or folic acid administration and treated with AS1517499. Mice treated with vehicle were used as control. At the end of experiments, kidneys were harvested for analysis of myeloid fibroblast activation, macrophage polarization, and renal fibrosis and function. Unilateral ureteral obstruction or folic acid administration induced STAT6 activation in interstitial cells of the kidney, which was significantly abolished by AS1517499 treatment. Mice treated with AS1517499 accumulated fewer myeloid fibroblasts and myofibroblasts in the kidney with ureteral obstruction or folic acid nephropathy compared with vehicle-treated mice. Moreover, AS1517499 significantly suppressed M2 macrophage polarization in the injured kidney. Furthermore, AS1517499 markedly reduced the expression levels of extracellular matrix proteins, and development of kidney fibrosis and dysfunction. These findings suggest that AS1517499 inhibits STAT6 activation, suppresses myeloid fibroblast activation, reduces M2 macrophage polarization, attenuates extracellular matrix protein production, and preserves kidney function. Therefore, targeting STAT6 with AS1517499 is a novel therapeutic approach for chronic kidney disease.


Assuntos
Fibroblastos/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pirimidinas/farmacologia , Fator de Transcrição STAT6/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fenótipo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Obstrução Ureteral/complicações
9.
Mil Med Res ; 8(1): 49, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488908

RESUMO

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) sense viral RNA and activate antiviral immune responses. Herein we investigate their functions in human epithelial cells, the primary and initial target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A deficiency in MDA5, RIG-I or mitochondrial antiviral signaling protein (MAVS) enhanced viral replication. The expression of the type I/III interferon (IFN) during infection was impaired in MDA5-/- and MAVS-/-, but not in RIG-I-/-, when compared to wild type (WT) cells. The mRNA level of full-length angiotensin-converting enzyme 2 (ACE2), the cellular entry receptor for SARS-CoV-2, was ~ 2.5-fold higher in RIG-I-/- than WT cells. These data demonstrate MDA5 as the predominant SARS-CoV-2 sensor, IFN-independent induction of ACE2 and anti-SARS-CoV-2 role of RIG-I in epithelial cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/imunologia , Proteína DEAD-box 58/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Receptores Imunológicos/metabolismo , SARS-CoV-2/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Linhagem Celular , Proteína DEAD-box 58/genética , Humanos , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Interferons/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais , Replicação Viral , Interferon lambda
10.
bioRxiv ; 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34462748

RESUMO

Hematopoiesis is finely regulated to enable timely production of the right numbers and types of mature immune cells to maintain tissue homeostasis. Dysregulated hematopoiesis may compromise antiviral immunity and/or exacerbate immunopathogenesis. Herein, we report an essential role of UBXN3B in maintenance of hematopoietic homeostasis and restriction of immunopathogenesis during respiratory viral infection. Ubxn3b deficient ( Ubxn3b -/- ) mice are highly vulnerable to SARS-CoV-2 and influenza A infection, characterized by more severe lung immunopathology, lower virus-specific IgG, significantly fewer B cells, but more myeloid cells than Ubxn3b +/+ littermates. This aberrant immune compartmentalization is recapitulated in uninfected Ubxn3b -/- mice. Mechanistically, UBXN3B controls precursor B-I (pre-BI) transition to pre-BII and subsequent proliferation in a cell-intrinsic manner, by maintaining BLNK protein stability and pre-BCR signaling. These results reveal an essential role of UBXN3B for the early stage of B cell development.

11.
bioRxiv ; 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33594370

RESUMO

The retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are the major viral RNA sensors that are essential for activation of antiviral immune responses. However, their roles in severe acute respiratory syndrome (SARS)-causing coronavirus (CoV) infection are largely unknown. Herein we investigate their functions in human epithelial cells, the primary and initial target of SARS-CoV-2, and the first line of host defense. A deficiency in MDA5 ( MDA5 -/- ), RIG-I or mitochondrial antiviral signaling protein (MAVS) greatly enhanced viral replication. Expression of the type I/III interferons (IFN) was upregulated following infection in wild-type cells, while this upregulation was severely abolished in MDA5 -/- and MAVS -/- , but not in RIG-I -/- cells. Of note, ACE2 expression was ~2.5 fold higher in RIG-I -/- than WT cells. These data demonstrate a dominant role of MDA5 in activating the type I/III IFN response to SARS-CoV-2, and an IFN-independent anti-SARS-CoV-2 role of RIG-I.

12.
Int J Low Extrem Wounds ; 20(3): 227-231, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32538216

RESUMO

This study aimed to investigate the erythrocyte sedimentation rate (ESR) optimal cutoff point in Chinese patients with diabetic foot osteomyelitis (DFO) and to evaluate the screening value of ESR combined with probe-to-bone (PTB) test for a fast diagnosis of DFO in early stage. A total of 204 diabetic inpatients with foot infection were tested for white blood cell count, neutrophil %, C reactive protein, and ESR at admission within 24 hours. All patients were performed PTB test. Patients with DFO (111) were confirmed by bone biopsy, the other patients (86) had only soft tissue infection. Although white blood cell count, neutrophil %, C-reactive protein, and ESR were different between the 2 groups, only area under curve of ESR was 0.832, with the value as a diagnostic indicator. The best cut point of ESR was >43 mm/h; the sensitivity, specificity, positive predictive value (+PV), and negative predictive value (-PV) were 82.9%, 70.5%, 0.78, and 0.77, respectively. ESR combined with PTB test (serial test), the sensitivity, specificity, +PV, -PV, positive likelihood ratio (+LR), and negative LR (-LR) were 63.56%, 98%, 0.97, 0.67, 31.75, and 0.37, respectively. ESR combined with PTB test (parallel test), the sensitivity, specificity, +PV, -PV, +LR, and -LR were 96%, 65.7%, 0.78, 093, 2.8, and 0.06, respectively, combined with PTB test is simple, favorable for application, and can early fast screening patients with DFO in high-risk patients.


Assuntos
Diabetes Mellitus , Pé Diabético , Osteomielite , Sedimentação Sanguínea , Proteína C-Reativa/análise , Pé Diabético/diagnóstico , Diagnóstico Precoce , Humanos , Osteomielite/diagnóstico , Sensibilidade e Especificidade
13.
Viruses ; 12(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147869

RESUMO

Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/patogenicidade , Artrite Infecciosa/imunologia , Quimiocina CXCL10/imunologia , Transdução de Sinais/imunologia , Alphavirus/genética , Infecções por Alphavirus/fisiopatologia , Animais , Artrite Infecciosa/virologia , Quimiocina CXCL10/genética , Modelos Animais de Doenças , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/virologia , Carga Viral , Viremia/imunologia
14.
Sci Rep ; 10(1): 15474, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968116

RESUMO

Microbial fuel cell (MFC) technology is a simple way to accelerate the treatment of the oily sludge which is a major problem affecting the quality of oil fields and surrounding environment while generating electricity. To investigate the oil removal and the characteristics of changes in the composition of bacteria, sediment microbial fuel cells (SMFCs) supplemented with oily sludge was constructed. The results showed that the degradation efficiency of total petroleum hydrocarbon (TPH) of SMFC treatment was 10.1 times higher than the common anaerobic degradation. In addition, the degradation rate of n-alkanes followed the order of high carbon number > low carbon number > medium carbon number. The odd-even alkane predominance (OEP) increased, indicating that a high contribution of even alkanes whose degradation predominates. The OUT number, Shannon index, AEC index, and Chao1 index of the sludge treated with SMFC (YN2) are greater than those of the original sludge (YN1), showing that the microbial diversity of sludge increased after SMFC treatment. After SMFC treatment the relative abundance of Chloroflexi, Bacteroidia and Pseudomonadales which are essential for the degradation of the organic matter and electricity production increased significantly in YN2. These results will play a crucial role in improving the performance of oily sludge MFC.

15.
Nat Commun ; 11(1): 260, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937766

RESUMO

Transmission from an infected mosquito to a host is an essential process in the life cycle of mosquito-borne flaviviruses. Numerous studies have demonstrated that mosquito saliva facilitates viral transmission. Here we find that a saliva-specific protein, named Aedes aegypti venom allergen-1 (AaVA-1), promotes dengue and Zika virus transmission by activating autophagy in host immune cells of the monocyte lineage. The AG6 mice (ifnar1-/-ifngr1-/-) bitten by the virus-infected AaVA-1-deficient mosquitoes present a lower viremia and prolonged survival. AaVA-1 intracellularly interacts with a dominant negative binder of Beclin-1, known as leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), and releases Beclin-1 from LRPPRC-mediated sequestration, thereby enabling the initialization of downstream autophagic signaling. A deficiency in Beclin-1 reduces viral infection in mice and abolishes AaVA-1-mediated enhancement of ZIKV transmission by mosquitoes. Our study provides a mechanistic insight into saliva-aided viral transmission and could offer a potential prophylactic target for reducing flavivirus transmission.


Assuntos
Aedes/metabolismo , Autofagia , Infecções por Flavivirus/transmissão , Flavivirus/fisiologia , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Aedes/virologia , Animais , Proteína Beclina-1/deficiência , Proteína Beclina-1/metabolismo , Vírus da Dengue/fisiologia , Infecções por Flavivirus/virologia , Humanos , Proteínas de Insetos/deficiência , Proteínas de Insetos/genética , Camundongos , Mosquitos Vetores/virologia , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Proteínas e Peptídeos Salivares/deficiência , Proteínas e Peptídeos Salivares/genética , Células THP-1 , Replicação Viral , Zika virus/fisiologia
16.
Nat Microbiol ; 4(12): 2405-2415, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527795

RESUMO

A blood meal is the primary route through which mosquitoes acquire an arbovirus infection. Blood components or their metabolites may regulate the susceptibility of mosquitoes to arboviruses. Here we report that serum iron in human blood influences dengue virus acquisition by mosquitoes. Dengue virus acquisition by Aedes aegypti was inversely correlated with the iron concentration in serum from human donors. In a mouse-mosquito acquisition model, iron supplementation reduced dengue virus prevalence and viral load, whereas neutralization of serum iron facilitated dengue virus infection in A. aegypti mosquitoes. Of note, mosquitoes feeding on iron-deficient (sideropenic) mice exhibited a higher prevalence of dengue virus. Reversal of the sideropenic status of hosts largely reduced dengue virus acquisition and infection by mosquitoes. Serum iron, rather than haem-bound iron, was utilized by the mosquito iron metabolism pathway to boost the activity of reactive oxygen species in the gut epithelium, subsequently inhibiting infection by dengue virus. On the basis of these results, a status of iron deficiency in the human population might contribute to the vectorial permissiveness to dengue virus, thereby facilitating its spread by mosquitoes.


Assuntos
Aedes/virologia , Vírus da Dengue/efeitos dos fármacos , Dengue/virologia , Ferro/sangue , Ferro/farmacologia , Mosquitos Vetores/virologia , Anemia Ferropriva , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/virologia , Humanos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Células Vero
17.
Cell Host Microbe ; 26(3): 369-384.e8, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513772

RESUMO

Pathogen pattern recognition receptors (PRRs) trigger innate immune responses to invading pathogens. All known PRRs for viral RNA have extranuclear localization. However, for many viruses, replication generates dsRNA in the nucleus. Here, we show that the nuclear matrix protein SAFA (also known as HnRNPU) functions as a nuclear viral dsRNA sensor for both DNA and RNA viruses. Upon recognition of viral dsRNA, SAFA oligomerizes and activates the enhancers of antiviral genes, including IFNB1. Moreover, SAFA is required for the activation of super-enhancers, which direct vigorous immune gene transcription to establish the antiviral state. Myeloid-specific SAFA-deficient mice were more susceptible to lethal HSV-1 and VSV infection, with decreased type I IFNs. Thus, SAFA functions as a nuclear viral RNA sensor and trans-activator to bridge innate sensing with chromatin remodeling and potentiate robust antiviral responses.


Assuntos
Antivirais/imunologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/imunologia , Proteínas Associadas à Matriz Nuclear/imunologia , RNA Viral/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Adenosina Trifosfatases/genética , Animais , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo I/genética , Vírus de DNA , Células HEK293 , Células HeLa , Herpesvirus Humano 1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Camundongos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Serina-Treonina Quinases , Vírus de RNA , RNA de Cadeia Dupla , Vírus
18.
mBio ; 10(4)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363026

RESUMO

Endogenous retroviruses (ERVs) are transposable elements that cause host genome instability and usually play deleterious roles in disease such as tumorigenesis. Recent advances also suggest that this "enemy within" may encode a viral mimic to induce antiviral immune responses through viral sensors. Here, through whole-genome transcriptome analysis with RNA sequencing (RNA-Seq), we discovered that a full-length ERV-derived long noncoding RNA (lncRNA), designated lnc-EPAV (ERV-derived lncRNA positively regulates antiviral responses), was a positive regulator of NF-κB signaling. lnc-EPAV expression was rapidly upregulated by viral RNA mimics or RNA viruses to facilitate the expression of RELA, an NF-κB subunit that plays a crucial role in antiviral responses. Transcriptome analysis of lnc-EPAV-silenced macrophages showed that lnc-EPAV was critical for RELA target gene expression and innate immune responses. Consistently, lnc-EPAV-deficient mice exhibited reduced expression of type I interferons (IFNs) and, consequently, increased viral loads and mortality following lethal RNA virus infection. Mechanistically, lnc-EPAV promoted expression of RELA by competitively binding to and displacing SFPQ, a transcriptional repressor of Rela Altogether, our work demonstrates an alternative mechanism by which ERVs regulate antiviral immune responses.IMPORTANCE Endogenous retroviruses are transposable genetic elements comprising 8% to 10% of the human and mouse genomes. Although most ERVs have been inactivated due to deleterious mutations, some are still transcribed. However, the biological functions of transcribed ERVs are largely unknown. Here, we identified a full-length ERV-derived lncRNA, designated lnc-EPAV, as a positive regulator of host innate immune responses. We found that silencing lnc-EPAV impaired virus-induced cytokine production, resulting in increased viral replication in cells. The lnc-EPAV-deficient mice exhibited enhanced susceptibility to viral challenge. We also found that lnc-EPAV regulated expression of RELA, an NF-κB subunit that plays a critical role in antiviral responses. ERV-derived lncRNA coordinated with a transcription repressor, SFPQ, to control Rela transcription. Our report provides new insights into the previously unrecognized immune gene regulatory mechanism of ERV-derived lncRNAs.


Assuntos
Imunidade Inata/fisiologia , RNA Longo não Codificante/genética , Fator de Transcrição RelA/metabolismo , Animais , Northern Blotting , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Imunidade Inata/genética , Immunoblotting , Imunoprecipitação , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fator de Transcrição RelA/genética , Células Vero
19.
J Biol Chem ; 294(45): 16494-16508, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416833

RESUMO

Toxoplasma gondii is an important neurotropic pathogen that establishes latent infections in humans that can cause toxoplasmosis in immunocompromised individuals. It replicates inside host cells and has developed several strategies to manipulate host immune responses. However, the cytoplasmic pathogen-sensing pathway that detects T. gondii is not well-characterized. Here, we found that cyclic GMP-AMP synthase (cGAS), a sensor of foreign dsDNA, is required for activation of anti-T. gondii immune signaling in a mouse model. We also found that mice deficient in STING (Stinggt/gt mice) are much more susceptible to T. gondii infection than WT mice. Of note, the induction of inflammatory cytokines, type I IFNs, and interferon-stimulated genes in the spleen from Stinggt/gt mice was significantly impaired. Stinggt/gt mice exhibited more severe symptoms than cGAS-deficient mice after T. gondii infection. Interestingly, we found that the dense granule protein GRA15 from T. gondii is secreted into the host cell cytoplasm and then localizes to the endoplasmic reticulum, mediated by the second transmembrane motif in GRA15, which is essential for activating STING and innate immune responses. Mechanistically, GRA15 promoted STING polyubiquitination at Lys-337 and STING oligomerization in a TRAF protein-dependent manner. Accordingly, GRA15-deficient T. gondii failed to elicit robust innate immune responses compared with WT T. gondii. Consequently, GRA15-/-T. gondii was more virulent and caused higher mortality of WT mice but not Stinggt/gt mice upon infection. Together, T. gondii infection triggers cGAS/STING signaling, which is enhanced by GRA15 in a STING- and TRAF-dependent manner.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Baço/metabolismo , Taxa de Sobrevida , Toxoplasma/patogenicidade , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitinação
20.
J Diabetes Complications ; 33(4): 267-277, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30772113

RESUMO

AIMS: High glucose (HG)-induced pancreatic ß-cell apoptosis may be a major contributor to the progression of diabetes mellitus (DM). NADPH oxidase (NOX2) has been considered a crucial regulator in ß-cell apoptosis. This study was designed to evaluate the impact of GLP-1 receptor agonist (GLP-1Ra) liraglutide on pancreatic ß-cell apoptosis in diabetes and the underlying mechanisms involved. METHODS: The diabetic rat models induced by streptozotocin (STZ) and a high fat diet (HFD) received 12 weeks of liraglutide treatment. Hyperglycemic clamp test was carried out to evaluate ß-cell function in vivo. Flow cytometry analysis was used to measure apoptosis rates in vitro. DCFH-DA method was used to detected ROS level in vivo and in vitro. RESULTS: Liraglutide significantly improved islet function and morphology in diabetic rats and decreased cell apoptosis rates. Thr183/Thr185 p-JNK1/2 and NOX2 levels reduced in diabetic rats and HG-induced INS-1 cell following liraglutide treatment. In addition, liraglutide upregulated the phosphorylation of AMPKα (p-AMPKα), which prevented NOX2 activation and alleviated HG-induced ß-cell apoptosis. CONCLUSION: The p-AMPKα/NOX2/JNK1/2 pathway is essential for liraglutide to attenuate HG-induced ß-cell apoptosis, which further proves that GLP-1Ras may become promising therapeutics for diabetes mellitus.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Liraglutida/farmacologia , NADPH Oxidase 2/metabolismo , Animais , Células Cultivadas , Citoproteção/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Liraglutida/uso terapêutico , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA